Neuronales Netz im Einsatz 09.05.2023, 07:00 Uhr

KI macht Quantenforschung effizienter

Quantenforschung ist aufwendig und vor allem zeitintensiv. Einem Forscherteam gelang es nun, durch den Einsatz von Künstlicher Intelligenz Teilbereiche zu beschleunigen. Ein neuronales Netz ermittelt schnell, wie ein elektromagnetisches Feld im Idealfall geformt ist, um Teilchen optimal zu steuern.

Forschende trainieren neuroyales Netz für Einsatz in der Quantenforschung

Forschende setzen ein neuronales Netz ein, um in der Quantenforschung schneller zu Ergebnissen zu gelangen.

Foto: TU Wien

Bei der Quantenforschung kommt es auf zwei Dinge an: passende elektromagnetische Felder und Teilchen, die sich präzise kontrollieren lassen. Nur wenn beides optimal aufeinander abgestimmt ist, lassen sich bei Versuchen auch Ergebnisse erzielen. Das ist in der Regel sehr aufwendig und es sind ganze Versuchsreihen notwendig, allein, um die Steuerung der Teilchen bestmöglich hinzubekommen. Eine Forschergruppe der Technischen Universität Wien (TU Wien) hat gemeinsam mit Kolleginnen und Kollegen des Forschungszentrums Jülich (FZ Jülich) eine Alternative entwickelt und dafür sogenannte lernende Algorithmen verwendet. Ihr Vorteil: Die notwendige Form der elektromagnetischen Felder lassen sich schneller ermitteln. Das bringt die Quantenforschung allein in puncto Effizienz ein Stück nach vorn.

Quantencomputer: Forschende lösen grundlegende Probleme

Forschende setzen zur Manipulation von Quantenteilchen in der Regel auf mehrere elektromagnetische Felder. Sie entstehen, indem elektrischer Strom durch winzige Strukturen geleitet wird. Darüber hinaus setzen Forschende häufig auch Lichtstrahlen ein, die sich zum Beispiel durch die Verwendung von Linsen, Spiegeln oder Filter ganz gezielt steuern lassen. Das Ergebnis dabei: An manchen Stellen ist der Lichtstrahl heller, an anderen dunkler. Ausgerechnet die Form des Lichtstrahls ist entscheidend für die Teilchen. Dementsprechend lassen sie sich beeinflussen, wenn man das Licht in seiner Intensität und Verteilung anpasst.

Digitale Kopie des Experiments mittels KI spart Zeit

Für die Steuerung dieses Lichtfelds nutzen die Wissenschaftlerinnen und Wissenschaftler zwei verschiedene Methoden. Die erste funktioniert gemäß Berechnung. Das bedeutet: Vorab wird berechnet, welche Form das Feld genau haben muss. Diese Methode hat jedoch den Nachteil, dass dafür alle Details des Experiments sehr genau bekannt sein müssen – Störeffekte inklusive. Deshalb kann das Ergebnis natürlich auch nur so präzise sein wie das verwendete Rechenmodell.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) Energietechnik - Umspannwerke/Hochspannungsfreileitung - Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Albtal-Verkehrs-Gesellschaft mbH-Firmenlogo
Projektleiter*in Elektrotechnik Verkehrsanlagen (m/w/d) Elektroingenieur*in oder Techniker*in Albtal-Verkehrs-Gesellschaft mbH
Karlsruhe Zum Job 
Die Autobahn GmbH des Bundes Niederlassung Nordbayern-Firmenlogo
Ingenieur Elektrotechnik / Bauingenieur (w/m/d) Ladeinfrastruktur Die Autobahn GmbH des Bundes Niederlassung Nordbayern
Nürnberg Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
bayernweit Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
Nord-Micro GmbH & Co. OHGa part of Collins Aerospace-Firmenlogo
Projekt- / Produktingenieur (m/w/d) Nord-Micro GmbH & Co. OHGa part of Collins Aerospace
Frankfurt am Main Zum Job 
Fresenius Kabi-Firmenlogo
Instandhalter (m/w/d) Prozesstechnik - API Herstellung Fischöl Fresenius Kabi
Friedberg (Hessen) Zum Job 
B. Braun Melsungen AG-Firmenlogo
Project Manager (w/m/d) Pre-Development B. Braun Melsungen AG
Melsungen Zum Job 
Hamburger Stadtentwässerung AöR ein Unternehmen von HAMBURG WASSER-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik als Projektleiter Hamburger Stadtentwässerung AöR ein Unternehmen von HAMBURG WASSER
Hamburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Projektender Energiewende THOST Projektmanagement GmbH
Stuttgart, Mannheim Zum Job 
RES Deutschland GmbH-Firmenlogo
Head of Engineering / Leitung technische Planung Wind- & Solarparks (m/w/d) RES Deutschland GmbH
Vörstetten Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektmanager (m/w/d) PMO Business Transformation MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
KÜBLER GmbH-Firmenlogo
Techniker / Ingenieur / Fachplaner / TGA (m/w/d) Heizungstechnik und Elektro KÜBLER GmbH
Ludwigshafen Zum Job 
Christian-Albrechts-Universität zu Kiel-Firmenlogo
Ingenieur*in der Fachrichtung Versorgungstechnik / Maschinenbau oder Elektrotechnik Christian-Albrechts-Universität zu Kiel
WPW JENA GmbH-Firmenlogo
Projektingenieur Elektroplanung (m/w/d) WPW JENA GmbH
Jena, hybrides Arbeiten Zum Job 
Bundesamt für Bauwesen und Raumordnung-Firmenlogo
Ingenieurin/Ingenieur (w/m/d) für die Koordination der Fachrichtung Elektrotechnik bzw. Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung
Schleifring GmbH-Firmenlogo
Projektingenieur (m/w/d) Key Account in der Elektronikbranche Schleifring GmbH
Fürstenfeldbruck Zum Job 
Niedersächsische Landesbehörde für Straßenbau und Verkehr-Firmenlogo
Sachbearbeiter Datenkommunikationstechnik (w/m/d) Niedersächsische Landesbehörde für Straßenbau und Verkehr
Hannover Zum Job 
ENGIE Deutschland GmbH-Firmenlogo
Sales Manager (m/w/d) Energieeffizienzprojekte ENGIE Deutschland GmbH
Stuttgart, Köln, Frankfurt Zum Job 

Die zweite Methode basiert auf sogenannten iterativen Steuerungsalgorithmen. Sie ermöglichen es, das Lichtfeld nach und nach zu verbessern. Dafür sind allerdings immer wieder neue Experimente notwendig – und zwar jeweils pro Änderungsschritt. Das Ergebnis gibt dann vor, welche Veränderungen am Lichtfeld notwendig sind, um sich dem Ziel zu nähern. Der Nachteil: Solche Messungen dauern unter Umständen Wochen und schon geringfügige Änderungen am Lichtfeld können zur Folge haben, dass die Versuchsreihe von neuem gestartet werden muss. Die Forschenden haben deshalb versucht, eine digitale Kopie des Experiments zu erstellen, um die Anzahl der Messungen deutlich zu reduzieren.

Kamerabilder trainierten das neuronale Netz

Um diese digitale Kopie zu erstellen, bedienten sie sich der künstlichen Intelligenz. „Wichtig war es, unser Wissen über die physikalischen Eigenschaften des Systems zu nutzen, und von vornherein in die künstliche Intelligenz einzubauen“, sagt Maximilian Prüfer, Postdoktorand in der Gruppe von Jörg Schmiedmayer am Vienna Center for Quantum Science and Technology (VCQ), Atominstitut, TU Wien. Entwickelt haben die Forschenden ein neuronales Netz. Dabei setzten sie die Struktur so auf, dass es die physikalischen Aufgaben lösen konnte. Die Forschenden nennen dies ein Physik-inspiriertes neuronales Netz. „Erst damit war es möglich, bei experimentell handhabbaren Datenmengen hervorragende Prognosen durch das neuronale Netz zu erhalten“, sagt Prüfer. Bei der Entwicklung dieses neuronalen Netzes unterstützte ein Team des FZ Jülich.

Die Forschenden setzten eine Kamera ein, um zu messen, wo sich die Teilchen befinden. Diese Bilder nutzten sie dann für das Training des neuronalen Netzes. Auf diese Art und Weise lernt das System, welche Änderungen am Experiment sich auf welche Weise auf die Quantenteilchen auswirken. Damit entwickle die künstliche Intelligenz eine Art „Verständnis“ des Systems, denn die physikalischen Formeln, die Zusammenhänge beschreiben, werden nicht parallel im System hinterlegt.

KI im Nachteil, wenn es um Präzision geht

Das neuronale Netz hat dabei einen besonderen Vorteil: Es lernt sehr schnell. Und die Ergebnisse zeigten darüber hinaus, dass die künstliche Intelligenz in der Lage ist, das Verhalten des physikalischen Systems korrekt zu imitieren. Da die Algorithmen blitzschnell testen, wie sich Änderungen im Experiment auswirken, können diese schneller fortgeführt werden. Darüber hinaus lassen sie sich auch auf neue Situationen übertragen. Lediglich einen Nachteil hat die künstliche Intelligenz an dieser Stelle: bei besonders hoher Präzision oder äußerst ungewöhnlichen Gegebenheiten muss doch das reale Experiment zurate gezogen werden. In Summe ist das Ergebnis der Forschergruppe ein echter Durchbruch: Denn es lassen sich nun viel mehr Experimente durchführen, die vorher nur mit erheblichem Aufwand oder überhaupt nicht möglich gewesen wären.

Mehr zum Thema Quantenforschung:

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.