Künstliche Intelligenz und Physik 10.12.2024, 18:30 Uhr

KI verbessert die Wettervorhersage

Eine Entwicklung der Google-Tochter Deepmind soll dank KI Wettervorhersagen präziser machen als die besten herkömmlichen Modelle.

Stürmiges Wetter: Eine Entwicklung der Google-Tochter Deepmind soll dank KI Wetterprognosen präzisier machen können als die besten herkömmlichen Modelle. Der Deutsche Wetterdienst arbeitet an eigenen Tools. Foto: panthermedia.net / Daniel Wagner

Stürmiges Wetter: Eine Entwicklung der Google-Tochter Deepmind soll dank KI Wetterprognosen präzisier machen können als die besten herkömmlichen Modelle. Der Deutsche Wetterdienst arbeitet an eigenen Tools.

Foto: panthermedia.net / Daniel Wagner

Genauer, schneller und verlässlicher: Ein neues KI-Modell der Google-Tochter Deepmind soll einer Studie zufolge, die letzte Woche erschien, Wettervorhersagen besser machen. Der Deutsche Wetterdienst (DWD) arbeitet an eigenen KI-Modellen. Ein von der Deutschen Presse-Agentur (dpa) befragter DWD-Experte sagt, bei bestimmten Aspekten kämen KI-Vorhersagesysteme noch nicht an klassische, physikalisch-basierte Modelle heran. Deswegen seien KI-Modelle als Ergänzung zu sehen, nicht als Ersatz. Der Titel der Studie „Probabilistische Wettervorhersage mit maschinellem Lernen“ im angesehenen Wissenschaftsmagazin Nature ist denn auch alles andere als reißerisch. Erstautor Ilan Price ist da in seinem Blog schon ambitionierter: „Neues KI-Modell verbessert die Vorhersage von Wetterunsicherheiten und -risiken und liefert schnellere und genauere Prognosen bis zu 15 Tage im Voraus.“

Roland Potthast, Leiter der Numerischen Wettervorhersage des DWD, ordnet die Studie als „wichtigen Schritt“ ein: Solche Modelle hätten viel Potenzial, das nun erschlossen werden müsse. Gencast heißt das Modell, das Deepmind in London entwickelt hat. Die Studie, so dpa, sei nur von Deepmind-Mitarbeitern durchgeführt, für das Fachblatt dann aber durch Unabhängige begutachtet worden. Resultat: Gencast übertreffe die beste herkömmliche mittelfristige Wettervorhersage, die des Europäischen Zentrums für mittelfristige Wettervorhersage (EZMW). Gencast sage zudem extreme Wetterlagen, die Zugbahn tropischer Wirbelstürme und die Entwicklung von Windstärken besser vorher.

Für eine Wettervorhersage braucht eine KI keine Physik zu kennen

Klassische Wetterprognosen basieren darauf, dass die grundlegenden physikalischen Gesetze – sprich Gleichungen – die Grundlage bilden. Forscherinnen und Forscher entwickeln darauf numerische Wettervorhersagealgorithmen, mit denen versucht wird, die dynamische Entwicklung der Erdatmosphäre möglichst genau abzubilden. Gerechnet wird auf Anlagen aus dem High-Performance Computing (HPC), riesigen Hochleistungsrechnern. Je schneller diese rechnen können und je länger sie rechnen (dürfen), desto besser wird die Gleichung gelöst. Die Vorhersagen sind dann zum Beispiel längerfristiger genauer.

Ein KI-Modell wie Gencast arbeitet grundlegend anders. Es arbeitet nicht mit den physikalischen Grundlagengleichungen für die Atmosphärenphysik und muss sie auch nicht kennen. Im Endeffekt lernt die KI phänomenologisch aus vorliegenden Daten und versucht über beständig leicht abgewandelte Neuberechnungen einzelne Datenpunkte möglichst genau zu treffen. Maschinelle Lernmodelle „konzentrieren sich darauf, einzelne Werte möglichst genau vorherzusagen, ohne die Naturgesetze direkt zu beachten“, so Potthast.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) Energietechnik - Umspannwerke/Hochspannungsfreileitung - Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Albtal-Verkehrs-Gesellschaft mbH-Firmenlogo
Projektleiter*in Elektrotechnik Verkehrsanlagen (m/w/d) Elektroingenieur*in oder Techniker*in Albtal-Verkehrs-Gesellschaft mbH
Karlsruhe Zum Job 
Die Autobahn GmbH des Bundes Niederlassung Nordbayern-Firmenlogo
Ingenieur Elektrotechnik / Bauingenieur (w/m/d) Ladeinfrastruktur Die Autobahn GmbH des Bundes Niederlassung Nordbayern
Nürnberg Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
bayernweit Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
Nord-Micro GmbH & Co. OHGa part of Collins Aerospace-Firmenlogo
Projekt- / Produktingenieur (m/w/d) Nord-Micro GmbH & Co. OHGa part of Collins Aerospace
Frankfurt am Main Zum Job 
Fresenius Kabi-Firmenlogo
Instandhalter (m/w/d) Prozesstechnik - API Herstellung Fischöl Fresenius Kabi
Friedberg (Hessen) Zum Job 
B. Braun Melsungen AG-Firmenlogo
Project Manager (w/m/d) Pre-Development B. Braun Melsungen AG
Melsungen Zum Job 
Hamburger Stadtentwässerung AöR ein Unternehmen von HAMBURG WASSER-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik als Projektleiter Hamburger Stadtentwässerung AöR ein Unternehmen von HAMBURG WASSER
Hamburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Projektender Energiewende THOST Projektmanagement GmbH
Stuttgart, Mannheim Zum Job 
RES Deutschland GmbH-Firmenlogo
Head of Engineering / Leitung technische Planung Wind- & Solarparks (m/w/d) RES Deutschland GmbH
Vörstetten Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektmanager (m/w/d) PMO Business Transformation MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
KÜBLER GmbH-Firmenlogo
Techniker / Ingenieur / Fachplaner / TGA (m/w/d) Heizungstechnik und Elektro KÜBLER GmbH
Ludwigshafen Zum Job 
Christian-Albrechts-Universität zu Kiel-Firmenlogo
Ingenieur*in der Fachrichtung Versorgungstechnik / Maschinenbau oder Elektrotechnik Christian-Albrechts-Universität zu Kiel
WPW JENA GmbH-Firmenlogo
Projektingenieur Elektroplanung (m/w/d) WPW JENA GmbH
Jena, hybrides Arbeiten Zum Job 
Bundesamt für Bauwesen und Raumordnung-Firmenlogo
Ingenieurin/Ingenieur (w/m/d) für die Koordination der Fachrichtung Elektrotechnik bzw. Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung
Schleifring GmbH-Firmenlogo
Projektingenieur (m/w/d) Key Account in der Elektronikbranche Schleifring GmbH
Fürstenfeldbruck Zum Job 
Niedersächsische Landesbehörde für Straßenbau und Verkehr-Firmenlogo
Sachbearbeiter Datenkommunikationstechnik (w/m/d) Niedersächsische Landesbehörde für Straßenbau und Verkehr
Hannover Zum Job 
ENGIE Deutschland GmbH-Firmenlogo
Sales Manager (m/w/d) Energieeffizienzprojekte ENGIE Deutschland GmbH
Stuttgart, Köln, Frankfurt Zum Job 

Neues KI-Tool macht fast immer bessere Wetterprognose bei 15-Tage-Vorhersagen

Das Deepmind-Team um Ilan Price fütterte Gencast mit den Analysedaten von Wetterereignissen aus 40 Jahren (1979 bis 2018). Im Anschluss testete die Forschungsgruppe, wie gut Gencast das Wetter für 2019 prognostizieren konnte. Und zwar anhand von weltweiten 15-Tage-Vorhersagen. Die KI ist schnell: Laut Studie braucht sie für eine dieser Prognosen 8 min, hieß es. Bei der Vorhersage von 1320 Windgeschwindigkeiten, Temperaturen und anderen atmosphärischen Merkmalen habe Gencast in über 97 % der Fälle besser abgeschnitten als das EZMW-Modell.

Laut Potthast teste der DWD derzeit ein eigenes KI-Modell, weitere seien in Arbeit. „Physikalisch basierte Modelle und KI-Modelle werden in der Vorhersagekette des DWD kombiniert, um jeweils auf jeder Zeitskala und für die angestrebten Vorhersagevariablen – etwa Niederschlag, Temperatur, Winde, Druck, Feuchte, Böen, Eisübersättigung und vieles mehr – die bestmöglichen Vorhersagen bereitstellen zu können“, so Potthast laut dpa. Er spricht bei KI im Bereich Wetterprognosen von einer sehr steilen Lernkurve.

KI-Wetterprognosen sind nicht immer besser

Dennoch, so der DWD-Experte, könnten KI-Modelle Vorhersagen machen, die auf den ersten Blick gut aussähen, aber in Wirklichkeit nicht ganz stimmten, besonders wenn das Wetter komplizierter werde. „Physikalische Modelle machen das besser, weil sie von Anfang an darauf ausgelegt sind, diese Zusammenhänge einzuhalten.“

Ein Einblick in die Arbeitsweise ihrer KI geben Price et al. in ihrem Papier in Nature. Gencast ist ein sogenanntes „bedingtes Diffusionsmodell“, eine generative Machine-Learning-Methode, die die Wahrscheinlichkeitsverteilung komplexer Daten modellieren und neue Stichproben erzeugen kann. Das Modell erzeugt iterativ Daten, die einer vorgegebenen Bedingung oder Anweisung entsprechen. „Ein zukünftiger atmosphärischer Zustand, Xt+1, wird durch iterative Verfeinerung eines als reines Rauschen initialisierten Kandidatenzustands erzeugt, der durch die beiden vorherigen atmosphärischen Zustände (Xt, Xt–1) bedingt ist“, heißt es im Paper.

Ein Beitrag von:

  • Stephan W. Eder

    Stephan W. Eder

    Redakteur VDI nachrichten
    Fachthemen: Energie, Energierohstoffe, Klimaschutz, CO2-Handel, Drucker und Druckmaschinenbau, Medien, Quantentechnologien

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.