Neuer Ansatz 16.01.2024, 07:00 Uhr

Ohne Datenaustausch: KI erkennt Fehler beim Schweißen

KI-Systeme sind hungrig. Sie benötigen große Mengen Daten, damit sie funktionieren. Doch bei sensiblen Daten kann das zum Problem werden. Forschende des Fraunhofer IPA haben dafür eine Lösung entwickelt: Dank föderierten Lernens können Unternehmen trotzdem von passenden KI-Konzepten profitieren.

Im Labor von der Firma Lorch werden Daten des Schweißprozesses erhoben, um Künstliche Intelligenz zu trainieren.

Dank einer neuen Trainingsmethode ist es Forschenden gelungen, mit KI Fehler beim Schweißen zu erkennen.

Foto: Lorch

Wer mit KI-Systemen arbeitet, der weiß: Ohne Training und ohne Daten funktioniert das nicht. Für Industrie- oder Produktionsbetriebe stellt dies allerdings häufig eine besondere Herausforderung dar. Und die betrifft im Speziellen die Daten. Genau vor diesem Problem stand auch die Lorch Schweißtechnik GmbH. Einerseits wollte das Unternehmen den eigenen Schweißprozess optimieren, also Rohmaterial und Energie einsparen. Andererseits war es für die Firma unmöglich, die damit verbundenen Daten zu ihren Anlagen und Prozessen herauszugeben. Unterstützung bekamen sie beim Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA. Die Lösung: föderiertes Lernen.

Hat KI ein gefälschtes Raffael-Gemälde entdeckt?

„Das Besondere daran: Wir trainieren die Künstliche Intelligenz mit den Daten der Kunden, ohne dass die Daten das jeweilige Unternehmen verlassen“, sagt Can Kaymakci, Wissenschaftler am Fraunhofer IPA. Föderiertes Lernen bedeutet am Beispiel der Firma Lorch Schweißtechnik konkret: Das Unternehmen trainiert mit den entsprechenden Daten ein ganz eigenes KI-Modell. Damit am Ende die gewünschten Ergebnisse dabei herauskommen, werden eben nicht die Daten, sondern die KI-Modelle ausgetauscht. So entsteht am Ende ein optimiertes Gesamtmodell.

Wie aus 200 Versuchen 2.200 werden für die KI

Damit das Unternehmen Lorch Schweißtechnik auch die passenden Ergebnisse erwarten konnte, musste zuerst ein geeignetes KI-Modell ausgesucht werden. Die Anforderungen lauteten: Energieverbrauchsdaten erkennen und Veränderungen feststellen. Die Wissenschaftlerinnen und Wissenschaftler der Fraunhofer IPA führten rund 200 Schweißversuche durch, um einerseits den Prozess zu beobachten und andererseits Fehler einzubauen, damit das System daraus lernt. Grundsätzlich ist diese Anzahl an Versuchen viel zu wenig, um eine KI damit ausreichend zu trainieren. Doch die Forschenden haben die vorhandenen Datensätze einfach vervielfacht, so dass aus 200 Versuchen am Ende 2.200 wurden.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
IMS Messsysteme GmbH-Firmenlogo
Systemingenieur (m/w/i) für Oberflächeninspektion IMS Messsysteme GmbH
Heiligenhaus Zum Job 
Menlo Systems GmbH-Firmenlogo
Ingenieur / Physiker (m/w/d) für Service und Support Menlo Systems GmbH
Planegg Zum Job 
Elektroenergieversorgung Cottbus GmbH-Firmenlogo
Ingenieur für Energienetzbetrieb (m/w/d) Elektroenergieversorgung Cottbus GmbH
Cottbus Zum Job 
fbw | Fernwärmegesellschaft Baden-Württemberg mbH-Firmenlogo
Elektroingenieur (m/w/d) (Ingenieur für Elektrotechnik, Energie- oder Versorgungstechnik o. ä.) fbw | Fernwärmegesellschaft Baden-Württemberg mbH
Stuttgart Zum Job 
Varex Imaging Deutschland AG-Firmenlogo
Elektroniker ( m/w/d) oder Mechatroniker (m/w/d) als Teamleitung im Bereich Messtechnik Varex Imaging Deutschland AG
B. Braun Melsungen AG-Firmenlogo
Head of (w/m/d) Portfolio Development Team Pain Therapy B. Braun Melsungen AG
Melsungen Zum Job 
STAWAG - Stadt und Städteregionswerke Aachen AG-Firmenlogo
Betriebsingenieur:in Wärmeanlagen (m/w/d) STAWAG - Stadt und Städteregionswerke Aachen AG
Wirtgen GmbH-Firmenlogo
Software-Testingenieur (m/w/d) Testautomatisierung -Steuerungssoftware für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 
B. Braun Melsungen AG-Firmenlogo
Projektingenieur (w/m/d) Global Quality Systems B. Braun Melsungen AG
Melsungen Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
Safran Data Systems GmbH-Firmenlogo
Embedded Software Engineer (m/w/d) Safran Data Systems GmbH
Bergisch Gladbach Zum Job 
naturenergie netze GmbH-Firmenlogo
Meister / Techniker - Steuerungstechnik (m/w/d) naturenergie netze GmbH
Rheinfelden, Donaueschingen Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in / Architekt*in / Bauleiter*in (m/w/d) für Großprojekte der Bereiche Infrastruktur (Freileitung, Kabeltiefbau, Bahn) THOST Projektmanagement GmbH
verschiedene Standorte Zum Job 
BG ETEM-Firmenlogo
Ingenieur/in (m/w/d) als Referent/in für die Branche Elektrotechnische Industrie BG ETEM
BG ETEM-Firmenlogo
Ingenieur/in (m/w/d) als Referent/in für die Branche Elektrohandwerk BG ETEM
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
Verwaltungs-Berufsgenossenschaft (VBG)-Firmenlogo
Aufsichtspersonen im Sinne des § 18 SGB VII (m/w/d) mit abgeschlossenem Master- oder Diplomstudium in Ingenieurwissenschaften Verwaltungs-Berufsgenossenschaft (VBG)
Hamburg Zum Job 
BG ETEM-Firmenlogo
Ingenieur/in (m/w/d) als Referent/in für die Branche Feinmechanik BG ETEM
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Entwicklungsingenieur (w/m/d) Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Prognost Systems GmbH-Firmenlogo
Technischer Kundenbetreuer / Elektroingenieur (m/w/d) im Customer Support Prognost Systems GmbH

Eine solche Vervielfältigung funktioniert praktisch wie eine, die man auch von Fotos kennt: indem man sie dreht, spiegelt, den Zoom verändert oder in Schwarz-Weiß umwandelt, entstehen viel mehr Daten. Darüber hinaus legte das Forscher-Team auch den Fokus auf den Zeitfaktor: Also nach wie vielen Messungen pro Sekunde erkennt das System zuverlässig Anwenderfehler? Bei dem Ergebnis war das Team sogar überrascht: Denn es waren weniger Messpunkte notwendig als vorher gedacht. „Auf diese Weise können wir die benötigte Speicherkapazität reduzieren, die Kommunikation vereinfachen und weniger Daten verarbeiten, was wiederum Zeit, Kosten und Energie spart“, resümiert Kaymakci. Nach diesen Untersuchungen und Erkenntnissen könnten die Wissenschaftlerinnen und Wissenschaftler das erste von ihnen erstellte KI-Modell auf einer Schweißstromquelle bei der Firma Lorch integrieren.

Föderiertes Lernen – sinnvolle Methode zum KI-Training

Die Forschenden haben mit diesem Ansatz des föderierten Lernens nicht nur dem Unternehmen geholfen, sondern parallel auch die Frage geklärt, welchen Vorteil dieser konkret bringt. Dafür erstellten sie ein Simulationstool, mit dem sie drei typische Szenarien untersuchten. Szenario eins, das allerdings auf einer hypothetischen Annahme basiert, da die Hersteller von Schweißgeräten zu diesen Daten keinen Zugang haben: eine KI, die ausschließlich mit Kundendaten trainiert wird. Szenario zwei: Modelle, die sie jeweils nur mit den Daten eines einzigen Kunden trainierten. Szenario drei: föderiertes Lernen, bei denen die einzelnen Modelle am Ende zusammengeschlossen wurden.

„Die Ergebnisse sprechen für sich: Die Erkennungsrate eines Modells, das über föderiertes Lernen trainiert wurde, liegt bei 0,81 und ist damit vergleichbar gut wie die eines Systems, für dessen Training alle Kundendaten zur Verfügung standen. Hier liegt die Erkennungsrate bei einem Wert von 0,86“, sagt Kaymakci. Dagegen lag die von Fehlern bei Systemen, die nur mit den Daten eines einzigen Kunden trainiert wurden, lediglich bei 0,45. Für den Hersteller von Schweißgeräten Lorch war dieses Ergebnis ein wichtiger Schritt in die Zukunft. Denn auf diese Art und Weise kann das Unternehmen den eigenen Kunden künftig einen Mehrwert bieten, ohne dass Daten bei Lorch gespeichert sein müssen. Die Kunden profitieren auch davon, dass Fehler schneller erkannt werden und man sozusagen auf das Wissen aller Kunden indirekt zurückgreifen könne. Die Forschenden betonen nach ihren neuesten Erkenntnissen: Der Ansatz des föderierten Lernens eignet sich nicht nur für Schweißprozesse, sondern auch für zahlreiche andere Fragestellungen. Vor allem dann, wenn es um sensible Daten geht.

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.