Ohne Datenaustausch: KI erkennt Fehler beim Schweißen
KI-Systeme sind hungrig. Sie benötigen große Mengen Daten, damit sie funktionieren. Doch bei sensiblen Daten kann das zum Problem werden. Forschende des Fraunhofer IPA haben dafür eine Lösung entwickelt: Dank föderierten Lernens können Unternehmen trotzdem von passenden KI-Konzepten profitieren.
Wer mit KI-Systemen arbeitet, der weiß: Ohne Training und ohne Daten funktioniert das nicht. Für Industrie- oder Produktionsbetriebe stellt dies allerdings häufig eine besondere Herausforderung dar. Und die betrifft im Speziellen die Daten. Genau vor diesem Problem stand auch die Lorch Schweißtechnik GmbH. Einerseits wollte das Unternehmen den eigenen Schweißprozess optimieren, also Rohmaterial und Energie einsparen. Andererseits war es für die Firma unmöglich, die damit verbundenen Daten zu ihren Anlagen und Prozessen herauszugeben. Unterstützung bekamen sie beim Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA. Die Lösung: föderiertes Lernen.
Hat KI ein gefälschtes Raffael-Gemälde entdeckt?
„Das Besondere daran: Wir trainieren die Künstliche Intelligenz mit den Daten der Kunden, ohne dass die Daten das jeweilige Unternehmen verlassen“, sagt Can Kaymakci, Wissenschaftler am Fraunhofer IPA. Föderiertes Lernen bedeutet am Beispiel der Firma Lorch Schweißtechnik konkret: Das Unternehmen trainiert mit den entsprechenden Daten ein ganz eigenes KI-Modell. Damit am Ende die gewünschten Ergebnisse dabei herauskommen, werden eben nicht die Daten, sondern die KI-Modelle ausgetauscht. So entsteht am Ende ein optimiertes Gesamtmodell.
Wie aus 200 Versuchen 2.200 werden für die KI
Damit das Unternehmen Lorch Schweißtechnik auch die passenden Ergebnisse erwarten konnte, musste zuerst ein geeignetes KI-Modell ausgesucht werden. Die Anforderungen lauteten: Energieverbrauchsdaten erkennen und Veränderungen feststellen. Die Wissenschaftlerinnen und Wissenschaftler der Fraunhofer IPA führten rund 200 Schweißversuche durch, um einerseits den Prozess zu beobachten und andererseits Fehler einzubauen, damit das System daraus lernt. Grundsätzlich ist diese Anzahl an Versuchen viel zu wenig, um eine KI damit ausreichend zu trainieren. Doch die Forschenden haben die vorhandenen Datensätze einfach vervielfacht, so dass aus 200 Versuchen am Ende 2.200 wurden.
Eine solche Vervielfältigung funktioniert praktisch wie eine, die man auch von Fotos kennt: indem man sie dreht, spiegelt, den Zoom verändert oder in Schwarz-Weiß umwandelt, entstehen viel mehr Daten. Darüber hinaus legte das Forscher-Team auch den Fokus auf den Zeitfaktor: Also nach wie vielen Messungen pro Sekunde erkennt das System zuverlässig Anwenderfehler? Bei dem Ergebnis war das Team sogar überrascht: Denn es waren weniger Messpunkte notwendig als vorher gedacht. „Auf diese Weise können wir die benötigte Speicherkapazität reduzieren, die Kommunikation vereinfachen und weniger Daten verarbeiten, was wiederum Zeit, Kosten und Energie spart“, resümiert Kaymakci. Nach diesen Untersuchungen und Erkenntnissen könnten die Wissenschaftlerinnen und Wissenschaftler das erste von ihnen erstellte KI-Modell auf einer Schweißstromquelle bei der Firma Lorch integrieren.
Föderiertes Lernen – sinnvolle Methode zum KI-Training
Die Forschenden haben mit diesem Ansatz des föderierten Lernens nicht nur dem Unternehmen geholfen, sondern parallel auch die Frage geklärt, welchen Vorteil dieser konkret bringt. Dafür erstellten sie ein Simulationstool, mit dem sie drei typische Szenarien untersuchten. Szenario eins, das allerdings auf einer hypothetischen Annahme basiert, da die Hersteller von Schweißgeräten zu diesen Daten keinen Zugang haben: eine KI, die ausschließlich mit Kundendaten trainiert wird. Szenario zwei: Modelle, die sie jeweils nur mit den Daten eines einzigen Kunden trainierten. Szenario drei: föderiertes Lernen, bei denen die einzelnen Modelle am Ende zusammengeschlossen wurden.
„Die Ergebnisse sprechen für sich: Die Erkennungsrate eines Modells, das über föderiertes Lernen trainiert wurde, liegt bei 0,81 und ist damit vergleichbar gut wie die eines Systems, für dessen Training alle Kundendaten zur Verfügung standen. Hier liegt die Erkennungsrate bei einem Wert von 0,86“, sagt Kaymakci. Dagegen lag die von Fehlern bei Systemen, die nur mit den Daten eines einzigen Kunden trainiert wurden, lediglich bei 0,45. Für den Hersteller von Schweißgeräten Lorch war dieses Ergebnis ein wichtiger Schritt in die Zukunft. Denn auf diese Art und Weise kann das Unternehmen den eigenen Kunden künftig einen Mehrwert bieten, ohne dass Daten bei Lorch gespeichert sein müssen. Die Kunden profitieren auch davon, dass Fehler schneller erkannt werden und man sozusagen auf das Wissen aller Kunden indirekt zurückgreifen könne. Die Forschenden betonen nach ihren neuesten Erkenntnissen: Der Ansatz des föderierten Lernens eignet sich nicht nur für Schweißprozesse, sondern auch für zahlreiche andere Fragestellungen. Vor allem dann, wenn es um sensible Daten geht.
Ein Beitrag von: