Humanoide Roboter 26.06.2024, 07:00 Uhr

RH5 lebt! Robotersteuerung mit hybrider KI und Belohnungssystem

Forschende des DFKI haben mithilfe einer hybriden KI eine sichere und effiziente Robotersteuerung entwickelt. Sie haben dazu maschinelles Lernen mit einer symbolischen KI verknüpft. Der humanoide Roboter RH5 lernt Bewegungen dynamisch und stabil und wird dabei durch ein mathematisches Belohnungssystem im “richtigen” Verhalten bestärkt.

"Oberkörper" eines humanoiden Roboters

Der humanoide Roboter RH5 lernt Bewegungen dank eines speziellen Belohungssystems schneller und sicherer.

Foto: DFKI, Annemarie Popp

Die Fortschritte in der Robotik, die auf datengestützter künstlicher Intelligenz basieren, eröffnen vielfältige Anwendungen. Eine große Herausforderung ist bis heute, dass diese sicher, zuverlässig und innerhalb des gewünschten Rahmens funktioniert. Wissenschaftlerinnen und Wissenschaftler des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) in Bremen haben eine Steuerung entwickelt, die schnelles, maschinelles Lernen mit mathematischer Verifikation kombiniert. Dieser hybride KI-Ansatz könnte eine zukunftsweisende Lösung für die moderne Robotik sein.

Subsymbolische KI-Verfahren wie Deep Learning stoßen in puncto Sicherheit und Zuverlässigkeit an oft ihre Grenzen. Ihre Entscheidungen basieren nicht auf symbolischen Berechnungen und sind daher mathematisch nicht überprüfbar. Gerade in sicherheitskritischen Bereichen wie der humanoiden Robotik sind Sicherheit und Zuverlässigkeit jedoch entscheidend, um Fehlfunktionen zu minimieren oder im Idealfall auszuschließen.

Hybride KI ermöglicht verifizierbare Robotersteuerung

Im BMBF-geförderten Projekt „VeryHuman“ haben DFKI-Forschende einen innovativen Ansatz entwickelt, der subsymbolische und symbolische KI-Methoden sinnvoll miteinander kombiniert. Sie nutzten symbolische Spezifikationen im sogenannten Reinforcement Learning, bei dem ein System für mathematisch überprüfbare Ergebnisse belohnt wird. Ziel war es, ein KI-basiertes Steuerungssystem für humanoide Roboter zu entwickeln, das komplexe Bewegungen sicher ausführen kann.

Menschen lernen in der Regel, indem sie auf bereits Gelerntes, Erfahrungen und Reflexe zurückgreifen. Bei der Entwicklung von Robotersystemen wollten die DFKI-Forschenden daher ebenfalls einen integrativen Ansatz verfolgen, das einen hybriden KI-Ansatz in regelbasierte Grundfunktionen und funktionsdefinierende Strukturen einbettet.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
ATLAS TITAN Mitte GmbH-Firmenlogo
Ingenieur Elektrotechnik (m/w/d) Schwerpunkt Automatisierungstechnik ATLAS TITAN Mitte GmbH
Braunschweig Zum Job 
ATLAS TITAN Mitte GmbH-Firmenlogo
Projektleiter Leitungsbau Schutztechnik (m/w/d) ATLAS TITAN Mitte GmbH
Stadtwerke Schneverdingen-Neuenkirchen GmbH-Firmenlogo
Leitender Ingenieur (m/w/d) Netzbau und -betrieb Strom und Breitband Stadtwerke Schneverdingen-Neuenkirchen GmbH
Schneverdingen Zum Job 
SPITZKE SE GVZ Berlin Süd-Firmenlogo
Bauleiter Elektrotechnik (m/w/d) SPITZKE SE GVZ Berlin Süd
Großbeeren Zum Job 
WIRTGEN GmbH-Firmenlogo
System- und Softwarearchitekt (m/w/d) - mobile Arbeitsmaschinen WIRTGEN GmbH
Windhagen (Raum Köln/Bonn) Zum Job 
WIRTGEN GmbH-Firmenlogo
Embedded Anwendungs-Softwareentwickler (m/w/d) - mobile Arbeitsmaschinen WIRTGEN GmbH
Windhagen (Raum Köln/Bonn) Zum Job 
Albtal-Verkehrs-Gesellschaft mbH-Firmenlogo
Projektleiter*in Elektrotechnik, Elektroingenieur*in oder Techniker*in (m/w/d) Albtal-Verkehrs-Gesellschaft mbH
Karlsruhe Zum Job 
WBS Training AG-Firmenlogo
Technische Trainer:in Automatisierungstechnik - CAD/CAM-Programmierung (m/w/d) WBS Training AG
remote (deutschlandweit) Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Projektleiter (m/w/i) für Röntgen-, Isotopen- und optische Messsysteme IMS Messsysteme GmbH
Heiligenhaus Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Senior Ingenieur Mess-, Steuerungs- und Regelungstechnik (m/w/d) ILF Beratende Ingenieure GmbH
Bremen, Berlin, Hamburg, München, Essen Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Junior Ingenieur Mess-, Steuerungs- und Regelungstechnik (m/w/d) ILF Beratende Ingenieure GmbH
München Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Elektrotechnik (m/w/d) für Transformatoren IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH
ME MOBIL ELEKTRONIK GMBH-Firmenlogo
Support- und Applikationsingenieur (m/w/d) ME MOBIL ELEKTRONIK GMBH
Langenbrettach Zum Job 
FERCHAU GmbH-Firmenlogo
Konstruktiver Elektroingenieur (m/w/d) FERCHAU GmbH
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Technical Support High Voltage Accessories (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
B. Braun Melsungen AG-Firmenlogo
Global Lead (w/m/d) Operational Technology (OT) B. Braun Melsungen AG
Melsungen Zum Job 
WIRTGEN GmbH-Firmenlogo
Duales Studium Software Engineering - Bachelor of Engineering (m/w/d) WIRTGEN GmbH
Windhagen, Remagen Zum Job 
Infraserv GmbH & Co. Höchst KG-Firmenlogo
Ingenieur (w/m/d) Anlagen- & Prozesssicherheit Infraserv GmbH & Co. Höchst KG
Frankfurt am Main Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Lösungsentwickler (w/m/d) im Digitallabor Geoinformatik Die Autobahn GmbH des Bundes
Schluchseewerk AG-Firmenlogo
Ingenieur (m/w/d) Schwerpunkt Konformität Schluchseewerk AG
Laufenburg Zum Job 

Symbolische Modelle steigern Effizienz des Lernens

Durch symbolische Spezifikationen gelang es, abstrakte kinematische Modelle zu erstellen, die mathematisch überprüfbar sind. Diese definieren Belohnungsfunktionen für das Reinforcement Learning und ermöglichen dem Roboter die Verifikation seiner Entscheidungen. Dadurch werden stabile und vorhersehbare Bewegungen gefördert und das Risiko von Fehlverhalten minimiert.

Zusätzlich modellierten die Forschenden das gewünschte Roboterverhalten als hybriden Automaten. Dieses mathematische Modell beschreibt kontinuierliches und diskretes Verhalten. Es reduziert den Zustandsraum des Systems und ermöglicht effizienteres Lernen.

Künstliche Intelligenz trifft auf innovative Robotik

Den Wissenschaftlerinnen und Wissenschaftlern gelang es so, dem humanoiden Roboter RH5 dynamisches Laufen beizubringen. Sie kombinierten die Methode des Nullmomentpunktes mit der Ganzkörperregelung. Diese Kombination stabilisiert den Roboter und macht ihn leistungsfähiger. So wurde robustes dynamisches Laufen bei unterschiedlichen Geschwindigkeiten und Schrittlängen erreicht.

Im Gegensatz zu den rein datengetriebenen Machine-Learning-Ansätzen bezieht die hybride KI Vorwissen beim Lernen effizient mit ein. Dies entspricht im Prinzip menschlichen Lernprozessen: Was man schon weiß, muss man nicht immer wieder neu lernen. Die hybride KI erhöht die Dateneffizienz und macht die Modelle robuster.

Das Ergebnis: Der humanoide Roboter RH5 läuft dynamisch mit bis zu 0,43 Metern pro Sekunde (m/s). Damit gehört er, abgesehen von Systemen mit aktiven Zehengelenken, zu den schnellsten Humanoiden ähnlicher Größe. Zur weiteren Verbesserung setzen die Forschenden Simulations- und Optimal-Control-Algorithmen ein, die auf dem symbolischen Modell basieren.

Hybride KI als Blaupause für sichere KI-Systeme?

Die präzisere Modellierung und Optimierung von Bewegungsabläufen durch hybride KI erhöhen Sicherheit und Effizienz von Robotern. Der im Rahmen von „VeryHuman” entwickelte hybride KI-Ansatz könnte als Blaupause für eine Belohnungsfunktion aus symbolischer KI dienen. Das ist besonders für Anwendungen relevant, bei denen Systeme oder deren Fehlverhalten ein potenzielles Risiko darstellen. Das Projekt „Very Human“ wurde vom BMBF von Juni 2020 bis Mai 2024 gefördert.

Ein Beitrag von:

  • Thomas Kresser

    Thomas Kresser macht Wissenschafts- und Medizinjournalismus für Publikumsmedien, Fachverlage, Forschungszentren, Universitäten und Kliniken. Er ist geschäftsführender Gesellschafter von ContentQualitäten und Geschäftsführer von DasKrebsportal.de. Seine Themen: Wissenschaft, Technik, Medizin/Medizintechnik und Gesundheit.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.