Revolutionäre 3D-Modellierung 19.06.2024, 12:30 Uhr

Schattenspiele: Wie MIT-Forschende verdeckte Objekte sichtbar machen

MIT-Forschende haben eine Technologie namens PlatoNeRF entwickelt, die Schatten nutzt, um verdeckte Objekte in 3D-Szenen sichtbar zu machen. Diese Technik könnte die Sicherheit autonomer Fahrzeuge erhöhen und die Effizienz von AR/VR-Headsets sowie Lagerrobotern verbessern.

MIT Plato-NeRF

Plato-NeRF ist ein Computer-Vision-System, das Lidar-Messungen mit maschinellem Lernen kombiniert, um eine 3D-Szene, einschließlich versteckter Objekte, aus nur einer Kameraansicht zu rekonstruieren, indem es Schatten ausnutzt. Hier modelliert das System das Kaninchen auf dem Stuhl genau, obwohl das Kaninchen nicht zu sehen ist.

Foto: Courtesy of the researchers, edited by MIT News

Stellen Sie sich vor, Sie fahren in einem autonomen Fahrzeug durch einen Tunnel. Plötzlich kommt es zu einem Unfall und der Verkehr steht still. Normalerweise müssten Sie auf das Auto vor Ihnen vertrauen, um rechtzeitig zu bremsen. Doch was wäre, wenn Ihr Fahrzeug durch ein innovatives System bereits früher erkennen könnte, was vor dem vorausfahrenden Auto passiert? Dies könnte in naher Zukunft Realität werden, dank einer neuen Technologie, die von Forschenden des MIT und von Meta entwickelt wurde.

Neue Technik: 3D-Szenen durch Schatten rekonstruieren

Die Forschenden haben eine Methode entwickelt, mit der physikalisch genaue 3D-Modelle einer Szene erstellt werden können, auch von Bereichen, die nicht direkt einsehbar sind. Diese Technik nutzt Schatten, um die Position verdeckter Objekte zu bestimmen. Sie nennen diesen Ansatz PlatoNeRF, inspiriert von Platons Höhlengleichnis, in dem Gefangene die Realität der Außenwelt anhand der Schatten an der Höhlenwand erkennen.

PlatoNeRF kombiniert Lidar-Technologie (Light Detection and Ranging) mit maschinellem Lernen. Dies ermöglicht präzisere 3D-Rekonstruktionen als einige bestehende KI-Techniken. Besonders beeindruckend ist, dass PlatoNeRF auch in Szenen mit schwer erkennbaren Schatten, etwa bei starkem Umgebungslicht oder dunklen Hintergründen, effektiv arbeitet.

Anwendungen und Vorteile

Diese Technik könnte die Sicherheit autonomer Fahrzeuge erheblich verbessern. Wenn Fahrzeuge durch Schatten sehen können, könnten sie potenzielle Gefahren früher erkennen und schneller reagieren.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
Narda Safety Test Solutions GmbH'-Firmenlogo
Einkäufer für den Bereich Elektrotechnik (m/w/d) mit der Möglichkeit zur Teamleitung Narda Safety Test Solutions GmbH'
Pfullingen Zum Job 
Evonik Operations GmbH-Firmenlogo
EMR-Anlageningenieur (m/w/d) Evonik Operations GmbH
Rheinfelden (Baden) Zum Job 
TenneT TSO GmbH-Firmenlogo
Site Manager (m/w/d) Wilhelmshaven TenneT TSO GmbH
Hannover, Wilhelmshaven Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager (m/w/d) Industrie VIVAVIS AG
Ettlingen Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager (m/w/d) Metering VIVAVIS AG
Berlin, Homeoffice Zum Job 
Haus der Technik e.V.-Firmenlogo
Fachdozent/in und Berater/in (m/w/d) für Krane und Hebezeuge in der Weiterbildung Haus der Technik e.V.
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur Technische Informatik THU Technische Hochschule Ulm
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
Teamleiter:in Mechanical & Electrical Engineering über ifp | Executive Search. Management Diagnostik.
Emlichheim Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Systemingenieur (m/w/i) für Oberflächeninspektion IMS Messsysteme GmbH
Heiligenhaus Zum Job 
ZVEI e.V.-Firmenlogo
Manager/in Automation (w/m/d) ZVEI e.V.
Frankfurt am Main Zum Job 
Evos Hamburg GmbH-Firmenlogo
Betriebsingenieur EMSR (m/w/d) Evos Hamburg GmbH
Hamburg Zum Job 
Stadtwerke Schneverdingen-Neuenkirchen GmbH-Firmenlogo
Netzplaner (m/w/d) Stadtwerke Schneverdingen-Neuenkirchen GmbH
Schneverdingen-Neuenkirchen Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur als Projektleiter Leitungsbau (m/w/d) TenneT TSO GmbH
Tebis ProLeiS GmbH-Firmenlogo
MES Consultant (m/w/d) Tebis ProLeiS GmbH
Martinsried/Planegg, Erndtebrück, Aachen, Home-Office Zum Job 
Heraeus Electronics GmbH & Co. KG-Firmenlogo
Head (m/f/d) of Global Quality Heraeus Electronics GmbH & Co. KG
BEC Robotics-Firmenlogo
Application Engineer (m/w/d) BEC Robotics
Pfullingen Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professur (W2) für das Lehr- und Forschungsgebiet "Automatisierungstechnik mit Schwerpunkt Antriebstechnik" Hochschule Esslingen - University of Applied Sciences
Esslingen am Neckar Zum Job 
Birkenstock Productions Hessen GmbH-Firmenlogo
Verantwortliche Elektrofachkraft (m/w/d) Birkenstock Productions Hessen GmbH
Steinau-Uerzell Zum Job 
TenneT TSO GmbH-Firmenlogo
Elektroingenieur für die Planung und Sicherstellung der europäischen Stromversorgung (m/w/d) TenneT TSO GmbH
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur (m/w/d) Strategische Netzplanung Strom Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Narda Safety Test Solutions GmbH'-Firmenlogo
Einkäufer für den Bereich Elektrotechnik (m/w/d) mit der Möglichkeit zur Teamleitung Narda Safety Test Solutions GmbH'
Pfullingen Zum Job 
Evonik Operations GmbH-Firmenlogo
EMR-Anlageningenieur (m/w/d) Evonik Operations GmbH
Rheinfelden (Baden) Zum Job 
TenneT TSO GmbH-Firmenlogo
Site Manager (m/w/d) Wilhelmshaven TenneT TSO GmbH
Hannover, Wilhelmshaven Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager (m/w/d) Industrie VIVAVIS AG
Ettlingen Zum Job 

Doch nicht nur im Straßenverkehr bietet PlatoNeRF Vorteile. AR/VR-Headsets könnten effizienter werden, indem sie die Geometrie eines Raums modellieren, ohne dass die anwendende Person herumlaufen und Messungen vornehmen muss. Auch in Lagerhäusern könnten Roboter schneller und präziser arbeiten, indem sie Gegenstände in unübersichtlichen Umgebungen besser finden.

Die Technologie hinter PlatoNeRF

PlatoNeRF baut auf Single-Photon-Lidar auf, einer neuen Sensormodalität. Lidar-Systeme erfassen 3D-Szenen, indem sie Lichtpulse aussenden und die Zeit messen, die das Licht benötigt, um zum Sensor zurückzukehren. Single-Photon-Lidars erkennen einzelne Photonen und liefern daher Daten mit hoher Auflösung.

Und so funktioniert das im Detail: Das Forschungsteam beleuchtet mit dem Single-Photon-Lidar einen Punkt in der Szene. Ein Teil des Lichts kehrt direkt zum Sensor zurück, der Großteil jedoch wird gestreut und prallt an anderen Objekten ab, bevor er zurückkehrt. PlatoNeRF nutzt diese sekundären Lichtreflexe, um zusätzliche Informationen über die Szene zu erfassen, einschließlich der Tiefe und Schatten.

Durch die Berechnung der Zeit, die das Licht benötigt, um zweimal abzuprallen und dann zum Sensor zurückzukehren, kann PlatoNeRF die Geometrie verborgener Objekte ermitteln. Das System beleuchtet nacheinander 16 Punkte und nimmt mehrere Bilder auf, die zur Rekonstruktion der gesamten 3D-Szene verwendet werden.

Die größte Herausforderung

Der Schlüssel zum Erfolg von PlatoNeRF liegt in der Kombination von Multibounce-Lidar mit einem speziellen maschinellen Lernmodell, dem neuronalen Strahlungsfeld (NeRF). NeRF kodiert die Geometrie einer Szene in den Gewichten eines neuronalen Netzes und ermöglicht so eine präzise Interpolation neuer Ansichten der Szene. Diese Kombination führt zu hochpräzisen 3D-Rekonstruktionen, auch bei Szenen mit niedriger Auflösung.

„Die größte Herausforderung bestand darin, diese beiden Technologien zu kombinieren“, sagt Tzofi Klinghoffer, MIT-Diplomstudent und Hauptautor der Studie. „Wir mussten die Physik des Lichttransports mit Multibounce-Lidar verstehen und in ein maschinelles Lernmodell integrieren.“

Praktische Anwendungen und Zukunftsaussichten

Das Forscherteam verglich PlatoNeRF mit zwei alternativen Methoden: einer Methode, die nur Lidar verwendet, und einer Methode, die nur NeRF mit Farbbildern verwendet. Sie stellten fest, dass PlatoNeRF beide Methoden übertrifft, insbesondere bei Lidars mit geringerer Auflösung. Damit ist die Technik auch für den Einsatz in der realen Welt geeignet, wo Sensoren mit geringerer Auflösung häufig verwendet werden.

In Zukunft wollen die Forscher die Anzahl der Lichtreflexe erhöhen, um die Rekonstruktion weiter zu verbessern. Außerdem wollen sie weitere Deep-Learning-Techniken integrieren und PlatoNeRF mit Farbbildmessungen kombinieren, um auch Texturinformationen zu erfassen.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.