Eine Revolution: Lebensmittelfarbe macht Haut transparent
Klingt fast wie Science-Fiction: Lebensmittelfarbe macht Haut durchsichtig und ermöglicht neue Einblicke in die Diagnostik und Behandlung von Krankheiten.
Stellen Sie sich vor, ein einfacher Lebensmittelfarbstoff könnte die Haut durchsichtig machen und es uns ermöglichen, wie durch Glas in den Körper hineinzuschauen. Was nach Science-Fiction klingt, ist jetzt Wirklichkeit geworden. Forschende der Stanford University haben herausgefunden, dass der bekannte Farbstoff Tartrazin genau das kann. Technologie könnte eine Vielzahl medizinischer Diagnosen und Anwendungen revolutionieren – von der Überwachung von Verdauungsstörungen bis hin zur Früherkennung von Krebs.
Inhaltsverzeichnis
Wissenschaftliche Grundlagen der Unsichtbarkeit
Die Forschungsgruppe um Guosong Hong, Assistenzprofessor für Materialwissenschaften und Ingenieurwesen an der Stanford University, hat eine Methode entwickelt, die auf den Prinzipien der Lichtstreuung und Lichtbrechung beruht. Normalerweise können wir nicht durch die Haut oder anderes biologisches Gewebe sehen, weil das Licht beim Eindringen in den Körper gestreut wird.
Dies liegt an den unterschiedlichen Brechungsindizes von Fetten, Flüssigkeiten, Proteinen und anderen Stoffen im Gewebe. Diese Unterschiede führen dazu, dass das Licht in verschiedene Richtungen abgelenkt wird und der Körper als undurchsichtige Masse erscheint.
Der Trick mit dem Farbstoff
Die Forscherinnen und Forscher erkannten, dass sie die Lichtstreuung reduzieren können, indem sie die Brechungsindizes der verschiedenen Gewebematerialien angleichen. Sie stellten fest, dass bestimmte Farbstoffe, die das Licht effizient absorbieren, die Fähigkeit besitzen, das Licht gleichmäßig zu leiten und die Brechungsindizes anzugleichen.
Tartrazin erwies sich als besonders wirksam. In Wasser gelöst und vom Gewebe absorbiert, passt es sich perfekt an die Brechungsindizes der umgebenden Materialien an und verhindert so die Streuung des Lichts. Das Ergebnis ist eine nahezu transparente Haut.
Erste Tests und beeindruckende Ergebnisse
Die Forschenden testeten ihre Hypothesen zunächst an dünnen Scheiben von Hühnerbrust. Als sie die Konzentration von Tartrazin erhöhten, glich sich der Brechungsindex der Flüssigkeit in den Muskelzellen dem der Muskelproteine an, und die Scheiben wurden durchsichtig. Im nächsten Schritt wurden Versuche an Mäusen durchgeführt.
Durch vorsichtiges Auftragen einer Tartrazinlösung auf die Kopfhaut der Tiere wurde die Haut durchsichtig, so dass Blutgefäße und Gehirnstrukturen sichtbar wurden. Ein ähnliches Experiment am Bauch der Mäuse ermöglichte es, die Bewegungen des Darms und die durch Herzschlag und Atmung verursachten Bewegungen in Echtzeit zu beobachten.
Medizinische Anwendungen und Zukunftsperspektiven
Die Möglichkeit, Gewebe transparent zu machen, eröffnet zahlreiche medizinische Anwendungen. Eine der vielversprechendsten ist die Verbesserung der Sichtbarkeit von Venen für Blutentnahmen. Auch die Entfernung von Tätowierungen könnte durch diese Technik erleichtert werden, da die Transparenz der Haut eine effizientere Laserbehandlung ermöglicht. Besonders chancenreich sind Anwendungen in der Onkologie.
Bei bestimmten Krebstherapien werden Laser eingesetzt, um Krebszellen zu zerstören. Die Herausforderung besteht jedoch darin, dass Laserstrahlen nur die oberflächlichen Hautschichten durchdringen können. Die neue Technologie könnte das Eindringen des Lichts in tiefere Gewebeschichten verbessern und damit die Behandlung effektiver machen.
Alte Formeln eröffnen neue Perspektiven
Das mit öffentlichen und privaten Fördermitteln finanziertes Projekt begann mit der Untersuchung der Wechselwirkung von Mikrowellenstrahlung mit biologischem Gewebe. Bei der Durchsicht von Optik-Lehrbüchern aus den 1970er und 1980er Jahren stießen die Forschenden auf zwei zentrale Konzepte: die mathematische Kramers-Kronig-Beziehung und das Phänomen der Lorentz-Oszillation, bei dem Elektronen und Atome durch Photonen in Molekülen in Resonanz versetzt werden.
Diese Methoden, die seit mehr als hundert Jahren bekannt sind, aber in dieser Form noch nie in der Medizin angewandt wurden, erwiesen sich als ideal. Mit ihnen war es möglich vorherzusagen, wie ein bestimmter Farbstoff den Brechungsindex biologischer Flüssigkeiten so erhöhen kann, dass er perfekt zu den umgebenden Fetten und Proteinen passt.
Der Doktorand Nick Rommelfanger, der im Rahmen eines Forschungsstipendiums der U.S. National Science Foundation (NSF) arbeitete, war einer der ersten, der erkannte, dass die Modifikationen, die Materialien für Mikrowellen transparent machen, auch auf das sichtbare Spektrum anwendbar sind, was neue Möglichkeiten für medizinische Anwendungen eröffnet.
Ein Molekül unter vielen
Beim Übergang von der Theorie zur Praxis bestellte der Postdoktorand Zihao Ou, der Hauptautor der Studie, eine Auswahl an intensiven Farbstoffen und begann, diese sorgfältig auf ihre idealen optischen Eigenschaften zu untersuchen. Im Laufe der Zeit wuchs das Forschungsteam auf 21 Mitglieder an, darunter Studenten, Mitarbeiter der Stanford-University und Berater, die verschiedene Analysemethoden nutzten.
Besonders wichtig war ein mehrere Jahrzehnte altes Ellipsometer. Das Ellipsometer, ursprünglich für die Halbleiterherstellung entwickelt, erwies sich hier als äußerst nützlich – möglicherweise zum ersten Mal in der Medizin – um die optischen Eigenschaften der untersuchten Farbstoffe präzise vorherzusagen.
Ein Beitrag von: