Neue Wearables 01.09.2021, 07:02 Uhr

Smarte Kleidung: Wenn das T-Shirt das Herz überwacht

Forschenden der Rice Universität in Houston, Texas, USA, ist es gelungen, einen leitfähigen Nanoröhrenfaden zu entwickeln, der sich in normale Kleidung einarbeiten lässt. So wird das T-Shirt zum smarten Kleidungsstück, das zum Beispiel die Herzfrequenz überwachen kann.

smarte Kleidung

Leitfähige Nanoröhrenfäden, eingearbeitet in T-Shirts, können die Herzfrequenz überwachen.

Foto: Jeff Fitlow/Rice University

Nanoröhren sind weich und flexibel. Sie lassen sich sogar in der Maschine waschen, wenn sie in Kleidung eingenäht sind. Ein Forscherteam um Matteo Pasquali, Chemie- und Biomolekularingenieur am Labor der Brown School of Engineering, experimentierte mit solchen Nanoröhrenfäden, die besonders leitfähig sind. In einem Zick-Zack-Muster wurden sie in den Stoff eines T-Shirts eingearbeitet. Diese Nähtechnik ist wichtig, damit sich der Stoff beim Tragen und Waschen ausdehnen kann, ohne dass Fäden dabei brechen.

Ergebnis: Die Fasern sind ebenso leitfähig wie Metalldrähte, dafür aber waschbar und bequem. Darüber hinaus sind sie nicht so anfällig dafür zu brechen, sobald der Mensch, der das Shirt trägt, sich bewegt. In puncto Datenerfassung seien die Messungen sogar genauer als bei einem herkömmlichen Brustgurt, den man vor allem aus dem Sport kennt. In Kombination mit kommerziellen medizinischen Elektrodenmonitoren sei das smarte Shirt sogar das etwas bessere EKG. EKG steht für Elektrokardiogramm, bei dem die elektrische Aktivität des Herzens gemessen wird und ein Mediziner beurteilen kann, ob das Herz gut funktioniert.

Smarte Kleidung muss eng am Körper anliegen

„Das Hemd muss eng an der Brust anliegen“, sagt Lauren Taylor, Absolventin der Rice Universität und Hauptautorin der Studie. Denn die Fasern stellen nicht nur einen stetigen elektrischen Kontakt mit der Haut des Trägers her, sondern dienen zugleich als Elektroden. So lässt sich das smarte Shirt zum Beispiel per Bluetooth mit einem Smartphone verbinden, auf dem dann die Herzaktivität aufgezeichnet werden kann. Auch eine Verbindung zu einem anderen Gerät, wie zum Beispiel zu einem Überwachungsmonitor sind möglich.

In der brandaktuellen Samsung Galaxy Watch 4 steckt ein neuer Hochleistungs-Chip

Stellenangebote im Bereich Fertigungstechnik, Produktion

Fertigungstechnik, Produktion Jobs
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Solventum Germany GmbH-Firmenlogo
Process Engineer Automation (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Technische Hochschule Augsburg-Firmenlogo
Professur für verfahrenstechnische Produktion Technische Hochschule Augsburg
Augsburg Zum Job 
Karlsruher Institut für Technologie (KIT)-Firmenlogo
Universitätsprofessur (W3) Intelligente rekonfigurierbare Produktionsmaschinen Karlsruher Institut für Technologie (KIT)
Karlsruhe Zum Job 
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 

Matteo Pasquali forscht schon seit 2013 an Kohlenstoff-Nanoröhrchen-Fasern. Man kennt sie zum Beispiel aus der Medizin, wo Nanoröhren unter anderem bei Herzoperationen eingesetzt werden, oder auch als elektrische Schnittstelle zum Gehirn und ebenso als flexible Antennen für Automobil-, Luft- und Raumfahrtanwendungen. All diese Einsatzgebiete haben er und sein Team untersucht.

Smarte Kleidung: Zick-Zack-Muster lässt sich sehr gut anpassen

Ursprünglich waren die Nanoröhren-Fasern etwa 22 Mikrometer breit und damit zu dünn für eine Nähmaschine. Die Forschenden setzten deshalb auf einen Seilmacher, um Fäden herzustellen, die von der Größe her einem normalen Faden möglichst nah kommen und dann in einer herkömmlichen Nähmaschine verwendet werden können. Dafür arbeiteten Sie mit einem Experten zusammen, der Seile für Schiffsmodelle herstellt. Anfänglich hatten die Forschenden noch versucht, einen solchen Faden von Hand zu weben. Von dem Experten bekamen sie ein Gerät dafür.

Nach verschiedenen Experimenten kamen die Wissenschaftler schließlich auf das Zick-Zack-Muster, mit dem sie die Kohlenstoff-Nanoröhrchen in das Gewebe des T-Shirts einarbeiteten. Denn dieses Muster lässt sich anpassen: Je nachdem wie stark der Stoff sich dehnt, kann man die Zick-Zack-Kurven enger oder weiter fassen. Gemeinsam mit Wissenschaftlern am Texas Heart Institute ermittelten sie, wie sie maximal engen Kontakt zwischen Haut und dem Shirt herstellen.

Neben smarter Kleidung gibt es weitere Anwendungsfelder

Die eingewebten Fasern lassen sich auch in Antennen oder LEDs integrieren. Ändere man noch ein wenig an der Geometrie der Fasern und der dazugehörigen Elektronik wäre es künftig möglich, Vitalfunktionen, Kraftausübung oder Atemfrequenz ganz einfach über solch smarte Kleidung zu überwachen. Die Forschenden sind sich sicher, dass darüber hinaus noch andere Anwendungsfelder möglich sind, wie eine Mensch-Maschine-Schnittstelle für Autos oder Soft-Robotik, als Antennen, Gesundheitsmonitore oder Schutz vor Geschossen in Militäruniformen. „Wir haben vor einigen Jahren mit einem Mitarbeiter gezeigt, dass Kohlenstoff-Nanoröhrchen-Fasern Energie pro Gewicht besser ableiten können als Kevlar, und das ohne die Verbesserungen, die wir seitdem in puncto Zugfestigkeit erzielt haben“, sagt Lauren Taylor.

„Wir sehen, dass dieses Material nach zwei Jahrzehnten Entwicklung in Laboren weltweit in immer mehr Anwendungen funktioniert“, sagt Pasquali. „Aufgrund der Kombination aus Leitfähigkeit, gutem Hautkontakt, Biokompatibilität und Weichheit sind Carbon-Nanotube-Fäden ein natürlicher Bestandteil von Wearables.“

Mehr zum Thema Wearables:

 

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.