Medikamente gezielt durch den Blutkreislauf steuern
Mikroantriebe im Blutkreislauf lassen sich durch Magnetfelder ganz individuell und gezielt steuern. Das ermöglicht es, Medikamente oder chemische Sensor-Moleküle genau an jene Stelle im menschlichen Körper zu befördern, an denen sie benötigt werden. Möglich wird das durch eine neue Generation so genannter Mikroschrauben.
An Mikroantrieben für medizinische Zwecke wird schon seit geraumer Zeit gearbeitet. Der Eidgenössischen Technischen Hochschule (ETH) in Zürich ist es nun aber gelungen, die extrem kleinen so genannten Mikroschrauben durch ein externes rotierendes Magnetfeld ganz gezielt in den Blutbahnen des menschlichen Körpers zum anvisierten Ziel zu steuern. Möglich geworden ist das sowohl durch ein neues Material wie eine ebenfalls neue Fertigungstechnik.
Externe Steuerung durch ein Magnetfeld
Die länglichen Antriebselemente werden als Mikroschrauben bezeichnet, weil sie schraubenförmig sind. Zugleich sind sie magnetisch. Als Antrieb für sie dient das extern rotierende Magnetfeld. Die winzigen Antriebselemente richten sich am Magnetfeld aus und drehen sich dadurch um die eigene Längsachse. Da sie schraubenförmig strukturiert sind, “schrauben” sich die kleinen Antriebselemente in der Blutbahn vorwärts.
In der Vergangenheit hingen die magnetischen Eigenschaften der Mikroelemente von deren Form ab, wie Christian Peters, Doktorand bei Professor Christofer Hierold vom Institut für Mikro- und Nanosysteme, erklärt. “Bisher schlingerten diese Elemente bei der Vorwärtsbewegung, und sie waren wenig effizient, weil ihre magnetischen Eigenschaften nicht ideal waren”, sagt Peters. Mit der neuen, in Zürich entwickelten Herstellungstechnik und dem neuen Material sind diese Nachteile ausgeschaltet.
Neues Verfahren und neues Material
Als Material verwendet das Züricher Team ein lichtempfindliches, biokomptabiles Epoxidharz, in das Magnetit-Nanopartikelchen eingearbeitet werden. In einem ersten Härtungsschritt wird eine ganz dünne Schicht dieses Materials einem Magnetfeld ausgesetzt. Das magnetisiert die Nanopartikel und ordnet sie zugleich in parallelen Linien an. Aus dem auf diese Weise veränderten Epoxidfilm werden dann mittels einer so genannten Zwei-Photonen-Polymerisation die winzigen Schraubenstrukturen gebildet.
Die Züricher Forscher vergleichen das Verfahren mit dem 3D-Druck. Der Brennpunkt eines Laserstrahls wird dabei vom Computer dreidimensional in der Epoxidharz-Schicht bewegt, wobei er das Material lokal weiter härtet. Die nicht-gehärteten Teile werden anschließend mit einem Lösungsmittel weggewaschen.
Die so erzeugten Schraubenstrukturen sind 60 Mikrometer lang und weisen einen Durchmesser von neun Mikrometern auf. Dabei verläuft die Magnetisierung rechtwinklig zur Längsachse. Mit dieser Auslegung können die neuen Antriebselemente präzise gesteuert werden. Sie bewegen sich viermal so schnell wie frühere Elemente und sind zugleich präzise steuerbar. Mit früheren Verfahren war das nicht zu erreichen. Bei ihnen verlief die Magnetisierung wie bei einer Kompassnadel nur in Richtung der Längsachse.
Dank des Mikro-3D-Druckers sind auch andere Formen möglich
Frühere anders hergestellte Mikroantriebselemente besaßen meist die Form eines Korkenziehers. Tests des ETH-Teams führten zu Strukturen, die spriralförmig verdrehten Bändern und doppelt verdrillten Drähten gleichen. Auch diese Formen der Antriebselemente bewegen sich in der Blutbahn schnell vorwärts.
Zu ihren andersartigen Eigenschaften zählt allerdings eine zweieinhalb- bis vierfach größere Oberfläche, was “sie für einzelne Einsatzzwecke besonders interessant macht”, wie Salvador Pané betont, Mitarbeiter der Forschungsgruppe Robotik und Intelligente Systeme unter Leitung von Professor Bradley Nelson.
Biokompatibilität muss noch getestet werden
Für die jeweiligen Einsatzzwecke im menschlichen Körper müssen die winzigen Antriebselemente mit unterschiedlichen (Arzneimittel)-Molekülen beschichtet werden. Je größer die Oberfläche der Antriebselemente ist, desto mehr können sie transportieren. Bei den Tests in Zürich hat sich schon bestätigt, dass sich die Antriebselemente mit biomedizinisch relevanten Stoffen beschichten lassen.
Bis die neue Technik im medizinischen Alltag Einzug hält, wird es allerdings noch eine Weile dauern. “Die Mikroschrauben werden noch weitere Tests auf Biokompatibilität durchlaufen müssen”, betont Christian Peters vom Institut für Mikro- und Nanosysteme. Er schätzt, dass sie in fünf bis zehn Jahren zur medizinischen Behandlung eingesetzt werden können.
Ein Beitrag von: