Intelligente Textilien 12.02.2019, 07:13 Uhr

Neues Gewebe reguliert Wärme nach Bedarf

Forscher der University of Maryland haben ein Gewebe aus synthetischem Garn entwickelt, das warm hält oder kühlt – es verändert seine Eigenschaften dynamisch, abhängig von der Situation.

Der Stoff sieht unscheinbar aus, ist aber in der Lage, seine Eigenschaften zu verändern. Er kann, je nach Bedarf, Wärme aufnehmen oder abgeben.
Foto: Faye Levine, University of Maryland

Der Stoff sieht unscheinbar aus, ist aber in der Lage, seine Eigenschaften zu verändern. Er kann, je nach Bedarf, Wärme aufnehmen oder abgeben.

Foto: Faye Levine, University of Maryland

Das Angebot an Funktionskleidung aus High-Tech-Materialien ist groß. Für Sportler ist es inzwischen selbstverständlich, dass ihr Shirt beispielsweise Feuchtigkeit vom Körper weg transportiert oder an kühlen Tagen Wärme speichert. Sie mussten sich bislang lediglich entscheiden, welche Funktionskleidung sie für die anstehende Trainings- oder Wettbewerbssituation auswählten. Das könnte sich jetzt ändern. Denn Wissenschaftler der amerikanischen University of Maryland (UMD) haben ein Gewebe entwickelt, das seine Eigenschaften der Umgebung anpasst.

Intelligente Textilie wird durch Feuchtigkeit gesteuert

Die intelligente Textilie soll die Wärmemenge, die durch sie hindurchfließt, automatisch regulieren. Wenn es heiß und feucht ist, wie an einem warmen, schwitzenden Körper, lässt der Stoff Wärme (Infrarotstrahlung) durch. Sobald es kühler und trockener wird, weil der Sportler sich zum Beispiel nicht mehr bewegt, reduziert das Gewebe die entweichende Wärme. Bisher gab es durchaus Stoffe, die über verschiedene Wege Wärme ableiteten. Es war jedoch nicht möglich gewesen, diese Eigenschaft quasi auszuschalten, wenn sie nicht mehr benötigt wurde und im Gegenteil Restwärme am Körper verbleiben sollte.

Grundlage für das neue Garn sind zwei verschiedene Synthetik-Fasern – eine ist in der Lage, Wasser aufzunehmen, die andere weist es ab. Das führt dazu, dass sich das Material verzieht, sobald es Feuchtigkeit ausgesetzt wird. Faktisch ziehen sich die Garnstränge zusammen. Je nasser sie werden, desto enger sind sie gewickelt. Dadurch vergrößern sich die Zwischenräume innerhalb des Gewebes. Im Grunde werden also die „Poren“ im Stoff geöffnet, wodurch Wärme entweichen kann. Dieser Effekt ist zwar nicht sehr groß, doch die einzelnen Faserstränge sind zudem mit Kohlenstoffnanoröhren beschichtet, also einem leitenden Material, und der Verformungsprozess des Gewebes hat Einfluss auf die elektromagnetische Kopplung zwischen den Kohlenstoffnanoröhren in der Beschichtung.

Nanokohlenstoffröhrchen funktionieren wie eine Jalousie

Von Kohlenstoffnanoröhrchen ist bekannt, dass sie eine große Wärmeleitfähigkeit besitzen. Dabei treten elektromagnetische Wechselwirkungen im Bereich der Infrarot-Wellenlänge auf, abhängig davon, wie groß der Abstand zwischen den Kohlenstoffnanoröhrchen ist. Je näher sie beisammen sind, desto größer ist der Kopplungseffekt und desto mehr Infrarotstrahlung wird durchgelassen. Je weiter sie voneinander entfernt sind, desto weniger Infrarotstrahlung tritt aus. YuHuang Wang, Professor für Chemie und Biochemie an der UMD erklärt es an einem Beispiel: „Das ist zwar ein stark vereinfachtes Bild, aber man kann sich den Vorgang vorstellen wie zwei Antennen, die man dicht zusammenbringt, um die Art der elektromagnetischen Wellen zu regulieren, die sie aufnehmen. Wenn die Fasern näher zusammengebracht werden, verändert sich ihre Strahlung ebenfalls. Bei Kleidung führt es im Ergebnis dazu, dass der Stoff auf die Wärmestrahlung des Körpers reagiert.“ Diesen Vorgang bezeichnen die Forscher als „Gating“ der Infrarotstrahlung. Wie eine abstimmbare Jalousie könne die Wärme durch diesen Effekt übertragen oder blockiert werden. Wang sagt, die Idee sei ihm in der Tat gekommen, als er die Jalousie in seinem Büro betrachtet habe.

Stellenangebote im Bereich Fertigungstechnik, Produktion

Fertigungstechnik, Produktion Jobs
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
Technische Hochschule Augsburg-Firmenlogo
Professur für verfahrenstechnische Produktion Technische Hochschule Augsburg
Augsburg Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Solventum Germany GmbH-Firmenlogo
Process Engineer Automation (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
Karlsruher Institut für Technologie (KIT)-Firmenlogo
Universitätsprofessur (W3) Intelligente rekonfigurierbare Produktionsmaschinen Karlsruher Institut für Technologie (KIT)
Karlsruhe Zum Job 
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 

Die Reaktion trete nahezu im selben Augenblick ein, in dem das Kleidungsstück auf die Feuchtigkeit trifft. Bevor der Träger merke, dass ihm heiß sei, setze daher bereits der Abkühlungseffekt seiner Funktionskleidung ein. Auf der anderen Seite kehre sich der dynamische Sperrmechanismus der intelligenten Textilie um, sobald der Körper abkühle und trockne. Die verbliebene Wärme wird dann also gespeichert.

Serienproduktion des Gewebes wäre problemlos möglich

Bevor das Gewebe in den Handel kommt, wird es allerdings noch eine Weile dauern, da die Forscher zuvor weitere Details ihrer Entwicklung klären wollen. Sie betonen aber, dass die verwendeten synthetischen Fasern leicht verfügbar seien. Die Kohlenstoffbeschichtung könne während des Standardfärbeprozesses problemlos hinzugefügt werden, sodass einer späteren Serienproduktion grundsätzlich nichts im Wege stehe.

Mit dieser neuen Entwicklung wird ein weiteres Mal das große Potenzial der Nanokohlenstoffröhrchen im Bereich der intelligenten Textilien deutlich. Während sie auf der einen Seite Stoffen große Festigkeit verleihen können, beispielsweise für Schutzwesten, bieten sie auf der anderen Seite hoch komplexe Anwendungsmöglichkeiten. So wird zum Beispiel an der University of Delaware an Textilien geforscht, die durch Beschichtungen aus Nanokohlenstoffröhrchen Bewegungen eines Körpers erfassen können.

 

Weitere Innovationen aus dem Bereich intelligente Textilien:

 

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.