ESA hat Umweltsatelliten Sentinel-2A ins All geschickt
Diese Nacht hieß es Lift-off für Sentinel-2A: Der Umweltsatellit der Europäischen Weltraumorganisation ESA startete mit einer Vega-Trägerrakete ins All. Er ist der zweite von acht Satelliten, mit denen das Copernicus-Programm Umweltveränderungen auf der Erde in nie dagewesener Genauigkeit beobachtet.
Am europäischen Raumfahrtzentrum in Kourou (Französisch-Guyana) erleuchtete um 3.52 Uhr MEZ eine Vega-Trägerrakete die Nacht: Das Geschoss des europäischen Raumfahrtunternehmens Arianespace brachte den 1,1 t schweren Umweltsatelliten Sentinel-2A ins All. Knapp zwei Minuten nach dem Start trennten sich nacheinander die drei Antriebsstufen, bis der Satellit nach knapp 55 min. Flugzeit seine Erdumlaufbahn in 800 km Höhe erreichte.
Kontrollzentrum in Darmstadt kalibriert Sentinel-2A
Sentinel-2A – in Friedrichshafen von Airbus gebaut – bereitet sich nun auf seinen Einsatz vor: Das ESA-Kontrollzentrum in Darmstadt hat alle Kontrollsysteme eingerichtet und das Solarsegel des Satelliten entfaltet. Jetzt gilt es, die Messsysteme zu kalibrieren. Diese Phase dauert laut ESA im Normalfall drei Tage. Der Satellit soll den Betrieb in drei bis vier Monaten aufnehmen.
Programm Copernicus beobachtet Umweltveränderungen
Und was ist Aufgabe von Sentinel-2A? Der Satellit ist Teil des Programms Copernicus, mit dem die ESA Umweltveränderungen auf dem Blauen Planeten beobachtet. Sentinel-1A befindet sich seit 2014 in der Erdumlaufbahn und ist für Radaraufnahmen zuständig.
„Mit Sentinel-2 setzt Europa neue Standards in der optischen Erdbeobachtung“, sagt Prof. Johann-Dietrich Wörner, Vorstandsvorsitzender des Deutschen Zentrums für Luft- und Raumfahrt (DLR), das die ESA-Mission betreut. „Das multispektrale Radiometer ist das leistungsfähigste System seiner Art.“
Sentinel-2A setzt bei Bildauflösung neue Maßstäbe
Dank der vielen Kanäle zwischen 443 nm (violett) und 2190 nm (kurzwelliges Infrarot) kann das Radiometer von Sentinel-2A verschiedene Pflanzen-, Böden- und Gewässereigenschaften unterscheiden.
Während der Satellit mit 7 km/s um die Erde rast, belichtet das System kontinuierlich einen 30.000 Pixel breiten (290 km) und nur ein Pixel hohen Streifen – nicht wie eine herkömmliche Kamera das ganze Bild gleichzeitig. Ein Computer setzt die Streifen zu einem Bild zusammen, wobei ein Pixel auf dem Bildschirm zehn Meter auf der Erde abbildet.
Zum Vergleich: Der amerikanische Erdbeobachtungssatellit Landsat erreicht eine Auflösung von 30 m pro Pixel und kann einen 80 km breiten Streifen aufnehmen.
Erdkarte lässt sich alle zehn Tage aktualisieren
Es entsteht eine detaillierte Karte der Erde, auf der Forscher Umweltveränderungen dokumentieren können. Sentinel-2A benötigt für die Erdumrundung nur 100 min und überfliegt den gleichen Ort nach zehn Tagen wieder. Und es soll noch schneller gehen. Nur fünf Tage wird die Bildaktualisierung dauern, wenn nächstes Jahr Sentinel-2B ins All startet und seinen Betrieb aufnimmt. 2021 sollen zehn Sentinel-Satelliten die Erde umkreisen.
Die Sentinel-Daten will die ESA frei zur Verfügung stellen. So können Landwirte beispielsweise Rückschlüsse auf den Nährstoffgehalt ihrer Äcker ziehen und Düngemittel optimal dosieren. Die Daten sollen auch Stadtplanern ihre Arbeit erleichtern und bei der Bekämpfung von Umweltkatastrophen helfen.
Datenübertragung mit Lasern
Vor allem für die Unterstützung in Katastrophen und Krisen müssen die Daten sehr bald nach der Aufnahme zur Verfügung stehen. Deshalb ist Sentinel-2A mit einem optischen Datenlink ausgerüstet. Das optische Laser Communication Terminal (LCT) überträgt riesige Datenmengen in Echtzeit über einen geostationären Daten-Relais-Satelliten (EDRS) aus dem Weltraum zur Erde.
Das LCT wurde federführend von der Tesat-Spacecom GmbH entwickelt. DLR-Vorstand DR. Gerd Grube: „Sentinel-2 steht für zwei Dinge: Den Aufbruch in eine neue Raumfahrt-Technologie und Qualität ‚made in Germany‘. Der Satellit demonstriert eindrucksvoll, wie Hochtechnologie im Weltraum einen Beitrag zu alltäglichen Problemen auf der Erde liefert.“
Ein Beitrag von: