Filmen mit Elektronenblitzen 23.12.2015, 07:49 Uhr

Atome in Bewegung: 0,000000000000001 s in Zeitlupe

Mit der Filmkamera beobachten, wenn sich zwei Atome verbinden? Eigentlich geht das nicht. Zum einen sind Atome unglaublich klein, was extrem hohe Auflösungen erfordert. Zudem laufen die Prozesse enorm schnell ab, was teure Pulslaser erfordert. Jetzt hat ein Forscherteam mit Elektronenblitzen einen Film über die Strukturänderung in einem Molekül gedreht.

Das ist ein Molekülfilm: Die Einzelbilder zeigen auf’s Atom genau, wie sich Pt(dmit)<custom name="sub">2</custom>-Moleküle innerhalb von einigen 100 Femtosekunden (fs) bewegen, während Me<custom name="sub">4</custom>P[Pt(dmit)<custom name="sub">2</custom>]<custom name="sub">2</custom> mit Laserlicht vom isolierenden in den metallisch leitenden Zustand umgeschaltet wird. In der Illustration links ist die anfängliche Struktur dargestellt: grau – Platin, schwarz – Kohlenstoff, gelb – Schwefel.

Das ist ein Molekülfilm: Die Einzelbilder zeigen auf’s Atom genau, wie sich Pt(dmit)2-Moleküle innerhalb von einigen 100 Femtosekunden (fs) bewegen, während Me4P[Pt(dmit)2]2 mit Laserlicht vom isolierenden in den metallisch leitenden Zustand umgeschaltet wird. In der Illustration links ist die anfängliche Struktur dargestellt: grau – Platin, schwarz – Kohlenstoff, gelb – Schwefel.

Foto: Science 2015/MPI für Struktur und Dynamik der Materie

Es dürfte der Traum eines jeden Chemikers sein, den rasend schnellen Strukturänderungen im Molekül zuzuschauen. Nun ist der Chemikertraum Wirklichkeit geworden. Ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) in Hamburg beteiligt waren, hat eine Art Molekülkamera konstruiert. Mit dieser Kamera können die Forscher detailliert und in Zeitlupe beobachten, wie sich Atome bei einem molekularen Übergang in einem komplexen Material bewegen.

Femtosekunde hat 14 Nullen hinter dem Komma

Das ist nicht trivial, denn die Atombewegungen laufen in einer Zeitspanne ab, die das Licht braucht, um den Durchmesser eines Haares zu durchqueren. Die Forscher messen diese Zeitspanne in Femtosekunden.

Stehen bei einer Millisekunde zwei Nullen hinter dem Komma, so sind es bei einer Femtosekunde 14 Nullen. Macht 0,000000000000001 s. Diese extrem kurze Zeitspanne und die geforderte Auflösung stellte das Forscherteam um den Chemieprofessor und Direktor des MPSD, Dwayne Miller, vor enorme Herausforderungen.

Grenzauflösung von einem Zehntelnanometer

Sie mussten ihre Molekülkamera mit einer Grenzauflösung von mindestens einem Zehntelnanometer ausstatten. „Würde man einen Apfel bis auf den Durchmesser der Mondumlaufbahn vergrößern, dann wäre eines seiner Atome so groß wie der ursprüngliche Apfel“, veranschaulicht Stuart Hayes das Problem. Der Forscher aus Schottland leitet in Millers Abteilung das Team, dem nun das erste Video eines chemischen Atomballetts gelungen ist.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Solventum Germany GmbH-Firmenlogo
Prozessingenieur Automatisierungstechnik / Mechatronik / Maschinenbau (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W2-Professur "Lasermaterialbearbeitung" Hochschule Aalen - Technik und Wirtschaft
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
Universität Heidelberg-Firmenlogo
Elektroingenieur*in in der Elektronikentwicklung (w/m/d) Universität Heidelberg
Heidelberg Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Plasmaphysik-Firmenlogo
Ingenieur*in der Fachrichtung Elektrotechnik Max-Planck-Institut für Plasmaphysik
Greifswald Zum Job 
Patent- und Rechtsanwälte Andrejewski, Honke-Firmenlogo
Ausbildung zum deutschen Patentanwalt (m/w/d) und European Patent Attorney Patent- und Rechtsanwälte Andrejewski, Honke
maxon motor GmbH-Firmenlogo
Prozessingenieur (w/m/d) für Qualität in Entwicklungsprojekten | Antriebstechnik maxon motor GmbH
Sexau bei Freiburg im Breisgau Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 

Filmkamera mit Femtosekunden-Elektronenblitz

Millers Team benutzt für die Filmkamera einen ultrakurzen Femtosekunden-Elektronenblitz. Elektronen können die Lage der Atome in Molekülen direkt abbilden. Diese Elektronenblitze lassen sich zudem ganz einfach und in kompakten Geräten erzeugen. „Das sind echte Tischexperimente“, sagt Stuart Hayes. „Trotzdem sind unsere Elektronenkanonen so hell, dass sie die molekulare Struktur in einem einzigen Schuss einfangen können“, ergänzt Miller. Vorhandene physikalische Probleme mit Elektronenblitzen lösten die Forscher, indem sie die Flugzeit der Elektronenwolke verkürzten, die Elektronenzahl optimierten und eine Art Optik für Elektronen bauten.

Standbild eines Kristalls in Bewegung: Dazu haben die  Forscher eine Probe des organischen Salzes EDO-TTF mit Elektronen beschossen. Eine Vielzahl dieser Bilder werden dann zu einem Film zusammengesetzt.

Standbild eines Kristalls in Bewegung: Dazu haben die  Forscher eine Probe des organischen Salzes EDO-TTF mit Elektronen beschossen. Eine Vielzahl dieser Bilder werden dann zu einem Film zusammengesetzt.

Quelle: Lai Chung (Nelson) Liu/University of Toronto

Mit ihrer Molekülkamera haben die Forscher nun ein neues Material untersucht, das am japanischen RIKEN-Forschungsinstitut entwickelt wurde. Dieses Material kann durch Temperatur oder Druck in seinen elektrischen Eigenschaften zwischen isolieren und metallisch leitend umgeschaltet werden.

Japanische Forscher fanden kürzlich heraus, dass sich dieser Phasenübergang gleichermaßen durch Laserlicht erzeugen lässt. Und genau bei diesem Phasenübergang haben Miller und sein Team nun in Zeitlupe zugeschaut.

„Wir sehen Atome in ihrer Bewegung ganz klar“

„Wir sehen diese Atome in ihrer Bewegung ganz klar“, schwärmt Miller, „wie Sterne am Nachthimmel.“ Sie konnten erstmals sehen, dass nur bestimmte Atomgruppen im Kollektiv wenige, koordinierte Schlüsselbewegungen machen, um die Materialeigenschaften zu verändern. So sind die zigtausend Möglichkeiten auf ein paar wenige, einfache und grundlegende Tanzfiguren des atomaren Balletts reduziert.

Miller benutzt ein Analogiebild: Er vergleicht das Spielfeld der Möglichkeiten einer chemischen Reaktion mit Tausenden von involvierten Atomen mit einer imposanten Berglandschaft. Dabei repräsentieren die Täler in dieser Landschaft verschiedene, stabile Molekülstrukturen. Bei einer Strukturänderung muss die zu ändernde Struktur über die Gipfel der Berge hinüber in eines der Nachbartäler. „Dabei reduzieren sich die vielen Möglichkeiten auf einen Passpfad, der am besten zugänglich ist“, erklärt Hayes.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.