Besserer Schutz 01.12.2016, 14:04 Uhr

Bochumer Sensoren schauen ins Innere von Lawinen

Was im Inneren einer Schneelawine geschieht, die mit ihren riesigen Schneemassen donnernd zu Tal stürzt, weiß niemand genau. Das wollen Ingenieure der Uni Bochum ändern – mit neuartigen Sensoren, die in die Lawinen blicken. Was das bringt? Besseren Schutz.

Lawinenabgang am Galtiberg in der Schweiz: Bochumer Ingenieure der Ruhr-Universität haben einen Sensor entwickelt, der erstmals auch detaillierte Daten aus dem Inneren einer zu Tal donnernden Lawine liefern kann.

Lawinenabgang am Galtiberg in der Schweiz: Bochumer Ingenieure der Ruhr-Universität haben einen Sensor entwickelt, der erstmals auch detaillierte Daten aus dem Inneren einer zu Tal donnernden Lawine liefern kann.

Foto: B. Barmettler/WSL-Institut für Schnee- und Lawinenforschung SLF

Lawinen haben eine verheerende Zerstörungskraft. Wie man sie am besten bändigt, weiß niemand ganz genau. Schutzeinrichtungen werden nach dem Motto „Trial and Error“ errichtet. „Was genau passiert, wenn sich eine Lawine den Berg hinunterbewegt, weiß man nicht, da man sie bislang nur von außen beobachtet hat“, sagt der Ingenieur Christoph Baer, der am Lehrstuhl für Elektronische Schaltungstechnik der Ruhr-Universität Bochum forscht.

Radar misst die Schneedichte in der Lawine

Künftig wird man es genau wissen. Denn die Ingenieure aus Bochum arbeiten gemeinsam mit ihren Kollegen aus Innsbruck und Davos an Sensoren, die erfassen können, was in der Lawine beim Abgang geschieht. In diesem Winter werden zwei mächtige Sensoren erstmals in Lawinenabgängen eingesetzt. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im kommenden Winter Messungen durchführen wird.

Haben gemeinsam den Sensor gebaut (v.l.): Patrick Kwiatkowski, Henrik Deis und Christoph Baer, angehende Ingenieure der Ruhr-Universität.

Haben gemeinsam den Sensor gebaut (v.l.): Patrick Kwiatkowski, Henrik Deis und Christoph Baer, angehende Ingenieure der Ruhr-Universität.

Quelle: Kramer/RUB

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W2-Professur "Lasermaterialbearbeitung" Hochschule Aalen - Technik und Wirtschaft
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
Universität Heidelberg-Firmenlogo
Elektroingenieur*in in der Elektronikentwicklung (w/m/d) Universität Heidelberg
Heidelberg Zum Job 
Schleifring GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W3-Professur "Life Cycle Engineering" Hochschule Aalen - Technik und Wirtschaft
August Storck KG-Firmenlogo
Leiter (m/w/d) Prozess- und Methodenmanagement August Storck KG
Ohrdruf Zum Job 
Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH-Firmenlogo
Teamleiter Development Engineering / Entwicklungsingenieur (m/w/d) Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH
Nürnberg, Homeoffice möglich Zum Job 
JACOBS DOUWE EGBERTS DE GmbH-Firmenlogo
Project Engineer (w|m|d) JACOBS DOUWE EGBERTS DE GmbH
Elmshorn Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Entwicklungsingenieur (w/m/d) Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Technische Universität Berlin-Firmenlogo
Universitätsprofessur - BesGr. W3 für Werkzeugmaschinen und Fertigungstechnik an der Fakultät V Technische Universität Berlin
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Plasmaphysik-Firmenlogo
Ingenieur*in der Fachrichtung Elektrotechnik Max-Planck-Institut für Plasmaphysik
Greifswald Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH

Bekannt ist, dass sich Teile einer Lawine wie Festkörper, andere wie Flüssigkeiten oder staubhaltige Gase verhalten. Jeder Zustand hat eine andere Zerstörungskraft. Wenn man wüsste, wie diese unterschiedlichen Kräfte wirken, könnte man realistischere Simulationen berechnen und die Lawinenbrecher besser konstruieren, so die Hoffnung der Ingenieure.

Die beiden Sensoren sind an einem 23 m hohen Masten befestigt. Er steht auf einem abgesperrten Hang im lawinengefährdeten Schweizer Vallée de la Sionne. Die Sensoren senden Radarwellen im Millimeterbereich aus. Diese breiten sich umso langsamer aus, je dichter der Schnee ist. Aus der Laufzeit können die Forscher den inneren Zustand einer Lawine simulieren.

Sensoren müssen gewaltigem Druck standhalten

Die Hülle der Sensoren besteht aus besonders belastbarem Flugzeugaluminium. Das ist wegen der gewaltigen Kraft der Schneemassen auch nötig. „Sie entspricht einem Druck von 3,5 Tonnen – also zwei Autos – auf der Fläche eines DIN-A4-Blattes“, sagt Baer. „Sie rollt direkt über unseren Sensor.“ Der muss natürlich hängenbleiben, um brauchbare Ergebnisse zu liefern. Jeder der beiden Sensoren ist etwa 1 m lang, 30 cm dick und wiegt 70 kg.

An 23 m hohen Masten werden die Sensoren installiert. Die Lawinen rasen über die Masten hinweg. Um der Belastung stand zu halten, sind die Sensoren durch Flugzeugaluminium geschützt.

An 23 m hohen Masten werden die Sensoren installiert. Die Lawinen rasen über die Masten hinweg. Um der Belastung stand zu halten, sind die Sensoren durch Flugzeugaluminium geschützt.

Quelle: Andreas Moser/SLF

Die Studenten Patrick Kwiatkowski und Henrik Deis bauten die Sensoren im Rahmen ihrer Tätigkeit als wissenschaftliche Hilfskräfte am Lehrstuhl für integrierte Systeme von Professor Nils Pohl. Am gleichen Lehrstuhl erforscht Timo Jaeschke das verwendete Millimeterwellen-Radarsystem im Rahmen seiner Promotion. Das zugrunde liegende Prinzip zur radarbasierten Dichtemessung entwickelte Baer in seiner Doktorarbeit.

Notfalls gibt es eine Sprengung

Das Testgebiet „Vallée de la Sionne“ im Wallis wurde wegen seiner großen Lawinenaktivität ausgewählt. Dort gibt es besonders im frühen und im späten Winter spontane Abgänge von Nasslawinen, spektakuläre Staublawinen kommen verstärkt in den kalten Wintermonaten Januar und Februar vor. Die Lawinen lösen sich in Höhen zwischen 2500 und 2700 m und rasen auf zwei Trassen Richtung Tal, um sich aber vor dem Tal zu vereinigen.

Lawinenabgang im Versuchsgebiet

Lawinenabgang im Versuchsgebiet „Vallée de la Sionne“ im Wallis: Dort werden in diesem Winter auch die Sensoren aus Bochum erprobt, um Lawinen im Innern besser erforschen zu können.

Quelle: WSL-Institut für Schnee- und Lawinenforschung SLF

Und genau in diesen Trassen stehen die Masten mit den Sensoren aus Bochum. Sie können Geschwindigkeit, Druck und Dichte erfassen und liefern genügend Daten, um die Lawinenabgänge später im Computer zu simulieren.

Und sollte es wider Erwarten in diesem Winter im Testgebiet keine Lawinenabgänge abgehen, helfen die Forscher nach. Eine Sprengung ist dann fest eingeplant.

Wie lange kann man in einer Lawine überleben?

Wie lange Verschüttete in einer Lawine überleben können, haben Forscher aus Südtirol getestet. Auch für Sie ist der Aufbau von Lawinen von großem Interesse, denn je lockerer der Schnee einer Lawine, umso mehr Atemluft haben die Opfer zur Verfügung. Und damit Opfer schneller gefunden werden, haben Ingenieure des Fraunhofer-Instituts für Materialfluss und Logistik IML in Prien eine App entwickelt, die das genaue Orten von Lawinenopfern über ihr Smartphone ermöglicht.

 

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.