Organische Elektronik 24.11.2015, 14:34 Uhr

Cyborg-Rosen: Forscher verpassen lebenden Pflanzen elektrische Leitungen

Schwedische Wissenschaftler haben Rosen leitende Kunststoffe implantiert und konnten so analoge und digitale Schaltkreise in der lebenden Pflanze erzeugen. Ihre Forschung eröffne die Möglichkeit, die Energie aus der Photosynthese nutzbar zu machen, glauben die Forscher. Ihre Cyborg-Rosen zum Leuchten bringen können sie auch schon. 

Von wegen romantischer Liebesbeweis: Cyborg-Rosen haben eine andere Mission. Schwedische Wissenschaftler haben ihnen leitende Kunststoffe implantiert und siehe da: In der lebenden Pflanze konnten so analoge und digitale Schaltkreise erzeugt werden. 

Von wegen romantischer Liebesbeweis: Cyborg-Rosen haben eine andere Mission. Schwedische Wissenschaftler haben ihnen leitende Kunststoffe implantiert und siehe da: In der lebenden Pflanze konnten so analoge und digitale Schaltkreise erzeugt werden. 

Foto: Linköping University

Über die winzigen Kanäle, die Wasser und Nährstoffe in der Pflanze verteilen, haben Forscher an der schwedischen Linköping University die wichtigsten Bauteile elektronischer Schaltkreise in Versuchspflanzen installiert. Sie verabreichten Rosen in Wasser gelöste, elektrisch leitfähige Polymere namens PEDOT-S. Die bildeten in den Leitgefäßen der Pflanze einen dünnen Film aus, ohne sie zu verstopfen.

Die Rose als Bio-Transistor

Im Versuch konnten die Forscher so einen Strang aus organischen Halbleitern als Transistor in einem elektrischen Schaltkreis einsetzen. Als Elektrolyt diente der natürliche Pflanzensaft, in dem Ionen, also elektrisch geladene Teilchen, transportiert werden, die Stoffwechselvorgänge auslösen. Den Forschern zufolge funktioniert der Bio-Transistor ähnlich dem siliziumbasierten, der beispielsweise in Smartphones und Computern zu finden ist.

Mit Hilfe organischer Elektronik könnte zum Beispiel gelingen, die bei der Photosynthese entstehehende Energie für Brennstoffzellen zu nutzen. 

Mit Hilfe organischer Elektronik könnte zum Beispiel gelingen, die bei der Photosynthese entstehehende Energie für Brennstoffzellen zu nutzen.

Quelle: Linköping University

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Max-Planck-Institut für Astronomie-Firmenlogo
Astronom*in / Physiker*in / Ingenieur*in (m/w/d) für Adaptive Optik Max-Planck-Institut für Astronomie
Heidelberg Zum Job 
Karlsruher Institut für Technologie-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) im Bereich mechanische Entwicklung und Projektleitung Karlsruher Institut für Technologie
Eggenstein-Leopoldshafen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Fachingenieur (w/m/d) BIM Die Autobahn GmbH des Bundes
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Max-Planck-Institut für Kernphysik-Firmenlogo
Bauingenieur oder Architekt (w/m/d) Max-Planck-Institut für Kernphysik
Heidelberg Zum Job 
Solventum Germany GmbH-Firmenlogo
Process Engineer Automation (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
aedifion-Firmenlogo
(Junior) Engineer - Smart Building (w/m/d) aedifion
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 

Und nicht nur das. Mit Hilfe einer anderen PEDOT-Variante konnten die Wissenschaftler die Farbe der Rosenblätter verändern. Sie ließen die Polymere zusammen mit Nanocellulose-Fasern ins Blattwerk der Rosen diffundieren, wo die Cellulose eine schwammartige, dreidimensionale Struktur aufbaute. Die Hohlräume füllten sich mit den leitfähigen Polymeren. Zusammen mit den Elektrolyten aus dem Pflanzensaft arbeitete das so entstandene Gewebe den Forschern zufolge so ähnlich wie ein Display. So konnten sie das Grün heller und dunkler dimmen.

Photosynthese-basierte Brennstoffzellen

Zum einen ließen sich anhand ihrer Studien Prozesse innerhalb der Pflanze besser verstehen, fassen die Wissenschaftler ihre Ergebnisse zusammen.  Die organische Elektronik eröffne darüber hinaus eine ganze Reihe von Möglichkeiten: Denkbar sei zum Beispiel, dass man eines Tages die Energie, die bei er Photosynthese entstehe, für Brennstoffzellen nutzen könnte. Letztlich sei es auch möglich, Wachstum und Entwicklung von Pflanzen zu beeinflussen und zu regulieren – möglicherweise eine Alternative zur Gentechnik.

Endlich könne man im wahrsten Sinne über “Energiepflanzen” reden, stellt Professor Magnus Berggren, der Leiter des Forscherteams vom Laboratory for Organic Electronics, fest. „Wir können Sensoren in Pflanzen platzieren und die Energie nutzen, die im Blattgrün steckt, grüne Antennen produzieren oder neue Materialien“, zeigt er das Potential seines Forschungsgebiets auf. „Alles passiert natürlich, und wir nutzen das hochentwickelte und einzigartige System der Pflanze selbst.“

 

Ein Beitrag von:

  • Susanne Neumann

    Susanne Neumann ist Webjournalistin. „Inhalt mit Anspruch“ ist das Motto der freien Journalistin und Online-Redakteurin. Sie steht für gründliche Recherche, eine verständliche Darstellung auch komplizierter Sachverhalte und Freude am Thema. Sie hat  Politik-, Theater-, und Kommunikationswissenschaften studiert.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.