Spinwellen reagieren 23.04.2013, 15:42 Uhr

Die Ausbreitung von Hitze lässt sich magnetisch steuern

Die Ausbreitung von Wärme in Gegenständen lässt sich offenbar magnetisch steuern. Mit einem magnetischen Granat und Mikrowellen konnten Forscher aus Deutschland und Japan die Ausbreitung von Wärme durch ein von außen angelegtes Magnetfeld beeinflussen.

Forschern der TU Kaiserslautern ist es gelungen, die Verteilung von Wärme durch Magnetfelder zu beeinflussen.

Forschern der TU Kaiserslautern ist es gelungen, die Verteilung von Wärme durch Magnetfelder zu beeinflussen.

Foto: TU Kaiserslautern

Wissenschaftlern aus Deutschland und Japan ist es gelungen, die Verteilung von Wärme durch ein Magnetfeld zu beeinflussen. Das Team um die drei Professoren Burkard Hillebrands von der TU Kaiserslautern, Sadamichi Maekawa, Direktor des Advanced Science Research Center der japanischen Agentur JAEA, und Eiji Saitoh von der Tohoku Universität im japanischen Sendai nutzt eine bestimmte Art von Wellen, um diesen Effekt zu erzeugen. Diese auch Spinwellen genannten magnetischen Momente werden durch Mikrowellen angeregt und breiten sich in einem magnetischen Material aus, ganz ähnlich wie Schallwellen in der Luft. Dabei zerfallen sie und ihre Energie wird in Wärme umgewandelt.

Die Abbildung zeigt als Skizze den experimentellen Aufbau zur Beobachtung der Wärmeentwicklung durch Mikro-Spinwellen in einem Film aus Yttrium-Eisen-Granulat.

Die Abbildung zeigt als Skizze den experimentellen Aufbau zur Beobachtung der Wärmeentwicklung durch Mikro-Spinwellen in einem Film aus Yttrium-Eisen-Granulat.

Quelle: TU Kaiserslautern

Die Forscher haben jetzt einen Weg gefunden, die Verteilung der Wärme zu kontrollieren, indem sie diese zerfallende Spinwelle gezielt in ihrer Ausbreitung steuern. Die Wissenschaftler jagen diese von Mikrowellen angeregte Spinwelle durch ein spezielles magnetisches Material: Yttrium Eisen Granat (Yttrium Iron Gamet, YIG), ein künstlich hergestellter Granat, der so in der Natur nicht vorkommt. Granate umfassen eine ganze Gruppe gesteinsbildender Mineralien, die meist in einer rhombenähnlichen Form wachsen. Yttrium gehört zu den Seltenen Erden und ist so kryptisch benannt nach dem ersten Fundort, der Grube Ytterby bei Stockholm.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Max-Planck-Institut für Astronomie-Firmenlogo
Astronom*in / Physiker*in / Ingenieur*in (m/w/d) für Adaptive Optik Max-Planck-Institut für Astronomie
Heidelberg Zum Job 
Karlsruher Institut für Technologie-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) im Bereich mechanische Entwicklung und Projektleitung Karlsruher Institut für Technologie
Eggenstein-Leopoldshafen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Fachingenieur (w/m/d) BIM Die Autobahn GmbH des Bundes
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Max-Planck-Institut für Kernphysik-Firmenlogo
Bauingenieur oder Architekt (w/m/d) Max-Planck-Institut für Kernphysik
Heidelberg Zum Job 
Solventum Germany GmbH-Firmenlogo
Process Engineer Automation (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
aedifion-Firmenlogo
(Junior) Engineer - Smart Building (w/m/d) aedifion
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 

In der Kombination mit Eisen als Kristall mit Granatstruktur hergestellt, eignet sich dieser YIG besonders gut als Resonator für Frequenzen im Gigahertzbereich. Das ist der Bereich der Mikrowellen, die genau in diesem Frequenzbereich schwingen. Mikrowellen sind aus der Küche gut bekannt, sie bringen in dem salopp nur Mikrowelle genannten Mikrowellenherd die Wassermoleküle in Wallung und erhitzen so die Speisen auf dem Drehteller hinter der Glasscheibe.

Die besondere Affinität der Granatkristalle für diese Mikrowellen und dazu ihre speziellen magnetischen Eigenschaften nutzen die Forscher aus Deutschland und Japan aus, indem sie ein Mikrowellenfeld auf die YIG-Schicht einstrahlen. In dem jetzt im Wissenschaftsjournal „Nature Materials“ veröffentlichten Experiment schwingen die Mikrowellen mit sieben Gigahertz.

Spinwellen folgen der Ausrichtung eines Magnetfeldes wie ein dressierter Hund

Diese Mikrowellen erzeugen an der Oberfläche der Kristall-Granatstruktur ein magnetisches Moment, welches sich durch den Granat bewegt. Das ist die so genannte Spinwelle, weil diese magnetischen Momente vom Spin der Elektronen im Granat herrühren. Normalerweise breitet sich diese Spinwelle gleichmäßig im Granat aus, zerfällt während der Ausbreitung und erzeugt dabei die Wärme. In diesen physikalischen Prozess greifen die Forscher ein, indem sie in den künstlichen Granaten ein Magnetfeld induzieren.

Und unter dem Einfluss dieses Magnetfeldes reagiert die Spinwelle wie ein dressierter Hund und lässt sich gezielt steuern. Schalten die Forscher das Magnetfeld nach unten, wandert der Wärmefluss der zerfallenden Spinwelle nach rechts, schalten sie ihn nach oben, wandert er nach links. Mit dem Richtungswechsel im Magnetfeld ändert sich somit auch der Wärmetransport durch die Spinwellen im Granat. Die deutschen und japanischen Forscher können somit die Ausbreitung und die Verteilung der Wärme gezielt steuern. Die YIG-Probe ist klein, sie misst nur 2,6 Zentimeter. Das reicht aber aus, um das Prinzip der Wärmekontrolle durch ein Magnetfeld zu demonstrieren. Eine Infrarotkamera über der Probe zeichnet die Wärmeverteilung in dem Granat auf.

In Zukunft Spinwellen-basierte Hitzekontrolle in elektronischen Geräten

Das ist alles noch Grundlagenforschung und es dürfte auch noch ein weiter Weg zu einem Einsatz im Alltag sein. Aber denkbar als direkte Anwendung ist die kontrollierte Führung der Abwärme in elektronischen Geräten. Denn gerade in den immer kleiner werdenden Geräten kann unkontrollierte Abwärme große Probleme verursachen, weil viele der verbauten elektronischen Teile extrem wärmeempfindlich sind. Durch die Wechselwirkung zwischen Spin und Wärme können diese wärmeempfindlichen elektronischen Bauteile sehr gezielt geschützt werden. Was dazu führt, dass die elektronischen Geräte noch kleiner werden können. Der auf den dressierten Spinwellen basierten Hitzekontrolle sei Dank.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.