Werkzeug für Materialforscher 02.10.2013, 12:29 Uhr

Elektronen reiten auf der Welle

Teilchenbeschleuniger, die heute Kilometer lang sind, können bei gleicher Leistung auf wenige Meter schrumpfen. Der neue Baustoff ist Glas oder Silizium.

Die Elektronen (blau) werden so abgeschossen, dass sie über die eingeritzte Glasoberfläche streifen. Die Lichtwellen (rot) bringen sie auf ein höheres Tempo. 

Die Elektronen (blau) werden so abgeschossen, dass sie über die eingeritzte Glasoberfläche streifen. Die Lichtwellen (rot) bringen sie auf ein höheres Tempo. 

Foto: MPG

Surfer träumen stets von der perfekten Welle, die sie weit über das Wasser trägt bis hin zum Strand. Physiker in Garching bei München haben sie gefunden, und sie können sie immer wieder in Gang setzen. Sie beschleunigen allerdings keinen Surfer, sondern Elektronen. Diese reiten auf einer Welle aus Licht und werden dabei immer schneller.

Die Wissenschaftler haben den Grundstein gelegt für neuartige Teilchenbeschleuniger, die nur noch ein paar Meter lang sind und dennoch die gleiche Leistung bringen wie heutige Linearbeschleuniger, die ein paar Kilometer lang sind. Letztlich werden sie sie sogar übertreffen. Damit haben Materialforscher, Kernphysiker und Biotechniker ein Werkzeug, das überall aufgebaut und genutzt werden kann. Experimentierzeiten an Linearbeschleunigern sind dagegen äußerst knapp, weil es weltweit nur wenige Anlagen gibt. Deshalb stehen die Forscher oft Monate lang in der Warteschleife. Auf hohe Geschwindigkeit beschleunigte Elektronen und andere winzige Partikel können feinste Strukturen in lebendem und totem Material sichtbar machen.

John Breuer und Peter Hommelhoff vom Max-Planck-Institut für Plasmaphysik haben den Aufbau des Teilchenbeschleunigers grundlegend verändert. In herkömmlichen Anlagen beschleunigen elektromagnetische Felder die Partikel. Diese werden mit Bauteilen aus Metall erzeugt. Je größer die Felder, desto schneller werden die Partikel. Es gibt allerdings eine Obergrenze, bei der die metallischen Baugruppen beschädigt werden.

Metallfreie Werkstoffe wie Glas oder Silizium sind völlig unempfindlich gegenüber elektrischen Feldern. Die Garchinger Physiker ritzten auf einer Länge von zwei hundertstel Millimetern feine Kerben in die Oberfläche eine Glasstückchens. Dabei hielten sie einen Abstand von exakt 750 Nanometer ein – ein Nanometer ist ein Millionstel Millimeter. Dieses Beugungsgitter, wie es fachmännisch genannt wird, lenkt Licht, das senkrecht eintrifft, in verschiedene Richtungen ab. Eine dieser Richtungen befindet sich parallel zur Oberfläche. Genau diesen Lichtteilchenstrom nutzen die Physiker, um Elektronen, die hineingeschossen werden, zu beschleunigen. Sie reiten gewissermaßen auf der Lichtwelle. Zeitgleich mit Forschern der Universität Stanford und des SLAC National Accelerator Laboratory im kalifornischen Menlo Park haben die Garchinger es als erste geschafft, Elektronen auf diese Weise zu beschleunigen.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
JACOBS DOUWE EGBERTS DE GmbH-Firmenlogo
Project Engineer (w|m|d) JACOBS DOUWE EGBERTS DE GmbH
Elmshorn Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W3-Professur "Life Cycle Engineering" Hochschule Aalen - Technik und Wirtschaft
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Entwicklungsingenieur (w/m/d) Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Technische Universität Berlin-Firmenlogo
Universitätsprofessur - BesGr. W3 für Werkzeugmaschinen und Fertigungstechnik an der Fakultät V Technische Universität Berlin
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) für die Entwicklung von medizinischen Kunststoffeinmalartikeln B. Braun Melsungen AG
Melsungen Zum Job 
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Technische*r Mitarbeiter*in bzw. Ingenieur*in (m/w/d) in einer ingenieurwissenschaftlichen Fachrichtung mit dem Schwerpunkt Elektronik / Mikroelektronik oder vergleichbar Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Johns Manville Europe GmbH-Firmenlogo
Technology Leader (m/w/d) Nonwovens Europe Johns Manville Europe GmbH
Wertheim Zum Job 
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Promovierte*r wissenschaftliche*r Mitarbeiter*in (m/w/d) einer natur- oder ingenieurwissenschaftlichen Fachrichtung Bundesanstalt für Materialforschung und -prüfung
Berlin-Adlershof Zum Job 
Rimowa GmbH-Firmenlogo
Senior Project Manager R&D (m/f/d) Rimowa GmbH
ROTHENBERGER Werkzeuge GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Rohrwerkzeuge und Rohrbearbeitungsmaschinen ROTHENBERGER Werkzeuge GmbH
Kelkheim Zum Job 
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Schleifring GmbH-Firmenlogo
Projektingenieur (m/w/d) Key Account in der Elektronikbranche Schleifring GmbH
Fürstenfeldbruck Zum Job 
Funkwerk Systems GmbH-Firmenlogo
Leiter Entwicklungsabteilung (m/w/d) Funkwerk Systems GmbH
Kölleda Zum Job 
maxon motor GmbH-Firmenlogo
Prozessingenieur (w/m/d) für Qualität in Entwicklungsprojekten | Antriebstechnik maxon motor GmbH
Sexau bei Freiburg im Breisgau Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH
PARI Pharma GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Medizintechnik PARI Pharma GmbH
Gräfelfing bei München Zum Job 
Max-Planck-Institut für Kognitions- und Neurowissenschaften-Firmenlogo
HF-Ingenieur*in (m/w/d) als technische*r oder wissenschaftliche*r Mitarbeiter*in Max-Planck-Institut für Kognitions- und Neurowissenschaften
Leipzig Zum Job 

Vorbild ist die Chipproduktion

Der winzige Beschleuniger des deutschen Teams schafft hochgerechnet 25 Megaelektronenvolt pro Meter, das ist etwa die gleiche Beschleunigungskraft wie die konventioneller Anlagen. Um mehr zu erreichen müsste der Abstand der Kerben auf der gläsernen Oberfläche immer größer werden. Die Max-Planck-Forscher können sich vorstellen, das Glas gegen Silizium auszutauschen, dessen Oberfläche sich mit den Belichtungs- und Ätztechniken, die bei der Herstellung von Speicherchips und Mikroprozessoren verwendet werden, leichter bearbeiten lässt.

Als wichtigsten Vorteil der neuen Methode nennt Breuer die leichte Skalierbarkeit des Verfahrens. Dass bedeutet, dass mehrere dieser kleinen Beschleuniger hintereinander geschaltet werden können. Die Elektronen, die aus einer Einheit herausgeschossen kommen, werden in der jeweils nächsten weiter beschleunigt.

 

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.