Extrem haftende Klebefolie: Geometrie des Kontaktes entscheidend
Geckos können glatte Wände hochlaufen, ohne herunterzufallen. Dabei kann sich das Tier auf ein Zusammenspiel zweier Kräfte verlassen, die seinen Milliarden feinster Härchen an den Füßen eine extreme Haftung verleihen. Kieler Forscher untersuchen die Gecko-Härchen ganz genau. Ziel ist es, ein durch farbiges Licht schaltbares Haftungssystem zu entwickeln.
Ein einzelnes dieser winzigen Gecko-Härchen kann ein Gewicht von 100 Nanonewton tragen. Dafür sorgen zwei Kräfte: Die van der Waals-Kraft, die auch zwischenmolekulare Kraft genannt wird, weil es dabei um die Wechselwirkung zwischen Atomen oder Molekülen geht. Die zweite Kraft, die dem Gecko seine Kunststücke ermöglicht, ist die Kapillarkraft, die zwischen hydrophilen Materialien in feuchter Umgebung wirkt. Bei dem typischen Durchmesser der Gecko-Härchen von einem halben Mikrometer sind die van der Waal-Kräfte und die Kapillarkräfte etwa gleich groß. Die Millionen von Gecko-Härchen tragen ein Gewicht von zehn Newton pro Quadratzentimeter. Eine mit Geckohärchen bestückte Briefmarke dürfte demnach ausreichen, um einen Ziegelstein zu tragen.
Pilzkopfförmige Haftgeometrie sorgt für gute Klebeeigenschaften
Forscher der Christian-Albrechts-Universität zu Kiel (CAU) konnten jetzt das Erfolgsmodell natürlicher Haftung dingfest machen: Es ist die Geometrie des Kontaktes, die für gute Haftung sorgt. Der Physikingenieur Lars Heepe, der Biophysiker Alexander Kovalev, der theoretische Physiker Alexander Filippov und der Biologe Stanislav Gorb studierten mit dem sogenannten Gecko-Tape, eine an der Universität Kiel in Zusammenarbeit mit der Gottlieb Binder GmbH entwickelte Haftfolie, die Geometrie der Haftelemente.
Deren mikroskopisch kleine Haftelemente sind den Füßen von Geckos und Blattkäfern nachempfunden, kleben sogar auf feuchten und rutschigen Untergründen, lassen sich immer wieder verwenden und rückstandsfrei wieder ablösen. Ergebnis: Es ist vor allem die pilzkopfförmige Haftgeometrie, die für die guten Klebeeigenschaften verantwortlich ist.
Natur setzt auf Pilzköpfe
Ausgangspunkt der Untersuchungen war die Erkenntnis, dass sich in der Natur sowohl auf der Nano-, der Mikro- und Makroskala diese pilzkopfförmige Geometrie bei den verschiedenen auf dem Land und im Wasser lebenden Organismen unabhängig voneinander entwickelt hat. Beispiele reichen dabei in der Nanoskala von der Haftung des Caulobacter crescentus an Oberflächen, über die pilzkopfförmigen Hafthaare einiger männlicher Blattkäfer im Mikrobereich bis hin zu Jungfernreben, die diese Grundgeometrie in der Makroskala ausgebildet haben, um gut zu haften. Und natürlich der Gecko als Haftkönig.
„Diese spezielle Kontaktgeometrie ist unabhängig voneinander entstanden. Das weist auf eine evolutionäre Anpassung der Organismen hin, die ihre Haftung immer weiter verbessert“, sagt Stanislav Gorb, Biologe am Zoologischen Institut der CAU. Um den Mechanismus zu verstehen, der diese Kontaktgeometrie so erfolgreich macht, haben die Forscher Hochgeschwindigkeitsaufnahmen des Ablösemoments gemacht. Mit 180 000 Bildern pro Sekunde haben sie so sichtbar gemacht, was genau geschieht, wenn sich das Gecko-Tape vom Haftgrund löst. „Das Ablöseverhalten der einzelnen pilzkopfförmigen Mikrostrukturen haben wir uns, zeitlich und räumlich mit höchster Auflösung, unterm Mikroskop angesehen“, erklärt Physikingenieur Lars Heepe.
Einheitliche Spannungsverteilung sorgt für gute Haftung
„Dabei zeigte sich, dass der eigentliche Moment des Ablösens, also der Zeitraum von der Entstehung eines Defekts in der Kontaktfläche bis zur vollständigen Ablösung, nur wenige Mikrosekunden lang ist.“ Der Kontakt reißt dabei mit bis zu 60 Prozent der Schallgeschwindigkeit des Haftmaterials, also etwa zwölf Meter pro Sekunde, ab. „Das ist nur möglich, wenn zwischen dem pilzkopfförmigen Haftelement und dem Untergrund eine einheitliche Spannungsverteilung vorherrscht“, erklärt Heepe.
Und genau diese einheitliche Spannungsverteilung bewirkt den extremen Hafteffekt der pilzkopfförmigen Geometrie. Eine simple Stempelgeometrie erzeugt hingegen Spannungskonzentrationen, die bewirken, dass sich das Material an den Kanten ablöst. Die dünne Haftplatte bei den Pilzköpfen beim künstlich hergestellten Gecko-Tape verhindern solche Spannungsspitzen. Daher löst sich das Material von innen nach außen ab. Dafür muss sehr viel Kraft aufgewendet werden – entsprechend stark ist die Haftung.
Erkenntnisse fließen in Sonderforschungsbereich der CAU ein
„Mit unseren Experimenten haben wir einen wichtigen Effekt eines in der Natur sehr erfolgreichen Haftmechanismus entschlüsseln können“, fasst Heepe die Arbeit des interdisziplinär besetzten Teams von der CAU zusammen. Mit ihren Ergebnissen haben die Forscher eine Grundlage geschaffen, um bestehende künstliche Haftstrukturen weiterzuentwickeln und zu verbessern. Die Erkenntnisse aus der Hochgeschwindigkeitsforschung sollen in den Sonderforschungsbereich 677 der CAU mit dem Titel „Funktion durch Schalten“ einfließen. Dieser umfasst derzeit 18 aktive Projekte und läuft seit Juli 2011. Die jetzt gestartete zweite Förderperiode geht bis 2015. Sie ist mit einem Budget von acht Millionen Euro ausgestattet.
Seit 2011 wird im Rahmen des Sonderforschungsbereiches 677 „Funktion durch Schalten“ an den verschiedensten Mikroschalter-Systemen geforscht. Das Teilprojekt C10 befasst sich mit photoschaltbaren Adhäsiven. Ausgangspunkt der Forschung ist die Mikrostruktur der Füße von Insekten und Geckos, deren erstaunliche Fähigkeit, auf Wänden zu laufen, die Wissenschaft seit Jahren fasziniert.
Schaltbare Haftung durch farbiges Licht erzeugen
In diesem Teilprojekt geht es um das Ziel, Haftsysteme zu schaffen, die sich durch Bestrahlung mit Licht bestimmter Wellenlängen in einen Haft- und Antihaftzustand versetzen lassen können. Also zum Beispiel ein Haftsystem, welches unter blauem Licht eine extreme Haftfähigkeit mitbringt und unter rotem Licht leicht zu lösen ist.
Ein Beitrag von: