Ordnung ins Chaos bringen 19.02.2025, 17:00 Uhr

Forscher lösen Rätsel der elektrostatischen Aufladung

Bislang konnte die Wissenschaft die elektrostatische Aufladung nur schwer erklären. Forschende aus Österreich bringen Ordnung ins Chaos.

Elektrostatische Aufladung Luftballon

Ein elektrostatisch aufgeladener Luftballon lässt die Haare zu Berge stehen. Doch was passiert genau? Forschende haben sich des Rätsels angenommen.

Foto: PantherMedia / iuricazac

Ob ein unerwarteter elektrischer Schlag beim Berühren einer Metalltürklinke, ob sich die Haare nach dem Kontakt mit einem Luftballon aufstellen oder ob Styropor am Pullover klebt – statische Aufladung begegnet uns täglich. Obwohl das Phänomen bereits in der Antike beschrieben wurde, ist es bis heute nicht vollständig verstanden. Forschende des Institute of Science and Technology Austria (ISTA) haben nun herausgefunden, dass die Kontakthistorie von Materialien einen entscheidenden Einfluss darauf hat, wie sie Ladung austauschen.

Scott Waitukaitis, Assistenzprofessor am ISTA, betont: „Es gibt kein Entkommen vor der Kontaktelektrisierung; jeder erlebt sie. Deshalb mag es uns überraschen, dass wir nicht genau verstehen, wie es passiert.“ Bisher konnten Wissenschaftlerinnen und Wissenschaftler nur schwer erklären, warum sich verschiedene Materialien unterschiedlich aufladen.

Chaotische Experimente ohne klare Muster

Besonders bei elektrischen Isolatoren wie Kunststoffen war die Ladungsübertragung schwer vorherzusagen. In den 1950er Jahren wurde bereits erklärt, wie Metalle Ladung austauschen, doch bei Isolatoren blieben viele Fragen offen. Eine sogenannte „triboelektrische Reihe“ sollte helfen: Sie ordnet Materialien nach ihrer Ladungsneigung an. Doch das Problem war, dass verschiedene Experimente oft widersprüchliche Ergebnisse lieferten.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
Schleifring GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W3-Professur "Life Cycle Engineering" Hochschule Aalen - Technik und Wirtschaft
August Storck KG-Firmenlogo
Leiter (m/w/d) Prozess- und Methodenmanagement August Storck KG
Ohrdruf Zum Job 
Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH-Firmenlogo
Teamleiter Development Engineering / Entwicklungsingenieur (m/w/d) Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH
Nürnberg, Homeoffice möglich Zum Job 
JACOBS DOUWE EGBERTS DE GmbH-Firmenlogo
Project Engineer (w|m|d) JACOBS DOUWE EGBERTS DE GmbH
Elmshorn Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Entwicklungsingenieur (w/m/d) Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Technische Universität Berlin-Firmenlogo
Universitätsprofessur - BesGr. W3 für Werkzeugmaschinen und Fertigungstechnik an der Fakultät V Technische Universität Berlin
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) für die Entwicklung von medizinischen Kunststoffeinmalartikeln B. Braun Melsungen AG
Melsungen Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Plasmaphysik-Firmenlogo
Ingenieur*in der Fachrichtung Elektrotechnik Max-Planck-Institut für Plasmaphysik
Greifswald Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH
maxon motor GmbH-Firmenlogo
Prozessingenieur (w/m/d) für Qualität in Entwicklungsprojekten | Antriebstechnik maxon motor GmbH
Sexau bei Freiburg im Breisgau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Universität Heidelberg-Firmenlogo
Elektroingenieur*in in der Elektronikentwicklung (w/m/d) Universität Heidelberg
Heidelberg Zum Job 

Waitukaitis beschreibt es als ein „totales Chaos“, da Versuche mit denselben Materialien oft unterschiedliche Resultate zeigten. Selbst identische Stoffe wie zwei gleiche Luftballons verhielten sich nicht einheitlich. Die entscheidende Frage blieb unbeantwortet: Was bestimmt, in welche Richtung die Ladung fließt?

Ein neuer Ansatz bringt Klarheit

Das Team von Waitukaitis und Juan Carlos Sobarzo suchte gezielt nach einer Antwort und stellte eine spannende Hypothese auf: „Die Kontakthistorie der Materialien beeinflusst ihre Ladungsübertragung“. Bisher wurde dieser Faktor kaum berücksichtigt.

Um ihre Theorie zu testen, verwendeten sie Polydimethylsiloxan (PDMS), ein silikonbasiertes Polymer. Sie wiederholten Experimente mit denselben Proben und stellten fest: Nach etwa 200 Berührungen entwickelten die Proben ein vorhersehbares Ladeverhalten. Materialien mit mehr Kontakten luden sich systematisch negativer auf als solche mit weniger Kontakten.

Sobarzo beschreibt den Moment der Erkenntnis so: „Ich nahm einen Satz Proben, die ich mehrfach genutzt hatte, und plötzlich ordneten sie sich in einer klaren Reihenfolge an.“ Beim erneuten Testen mit frischen Proben ergaben sich anfangs jedoch wieder zufällige Ergebnisse. Erst durch mehrfachen Kontakt stellte sich Ordnung ein.

Glattere Oberflächen beeinflussen die Ladung

Aber warum beeinflusst die Kontakthistorie die Ladung? Das Team suchte nach einer physikalischen Veränderung der Oberfläche und wurde fündig: Durch wiederholten Kontakt glätteten sich mikroskopische Unebenheiten der Materialien. Diese Veränderung auf nanometrischer Ebene könnte der entscheidende Faktor für die Ladungsübertragung sein.

Wie genau diese Glättung die elektrische Ladung beeinflusst, ist noch nicht restlos geklärt. Doch die Erkenntnisse sind wegweisend für das Verständnis elektrostatischer Phänomene. „Wir haben es geschafft, einen großen Hinweis auf einen schwer fassbaren Mechanismus zu liefern“, sagt Sobarzo.

Neues Verständnis der statischen Elektrizität

Diese Forschungsergebnisse könnten dazu beitragen, elektrostatische Effekte gezielt zu steuern. In der Industrie, etwa in der Halbleiterfertigung oder bei der Vermeidung von unerwünschter Staubanziehung, sind diese Erkenntnisse besonders wertvoll.

Waitukaitis zeigt sich begeistert: „Wir haben bewiesen, dass die Wissenschaft der statischen Elektrizität nicht mehr so hoffnungslos ist.“ Durch diese neuen Einsichten entsteht eine Ordnung, wo vorher nur Chaos war.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.