Material mit „Dimple-Effekt“ 26.06.2014, 06:55 Uhr

Gedellt und glatt: Ball wechselt „kluge“ Oberfläche

Dass die Dellen im Golfball dessen Flugeigenschaften verbessern, ist bekannt. Nun haben amerikanische Forscher einen kleinen smarten Ball entwickelt, der in Echtzeit zwischen gedellter und glatter Oberfläche wechseln kann.  

Vermutlich hat der Zufall die aerodynamische Bedeutung der Dellen im Golfball, der sogenannten Dimples, einst ans Licht gebracht. Vor rund 150 Jahren hatten neue Golfbälle noch eine glatte Oberfläche, die im Spiel durch die Wucht des Schlages mehr und mehr Dellen abbekam. Dass die Dellen im Ball dessen Luftwiderstand verringern und ihn bis zu viermal weiter fliegen lassen als mit glatter Oberfläche, war also eine Erkenntnis aus der Praxis und nicht aus der Wissenschaft.

Durch Dellen im Golfball entstehen Turbulenzen

Heute haben alle Golfbälle 300 bis 450 regelmäßig angeordnete Dimples und diese sind in erster Linie dafür verantwortlich, natürlich neben der Abschlagtechnik des Spielers, dass der Ball mehrere hundert Meter weit fliegen kann. Wie jedes massive Objekt, das sich durch die Luft bewegt, wird auch der Golfball im Flug von der sogenannten Grenzschicht, einer dünnen Lufthülle, umgeben. Bei hohen Geschwindigkeiten löst sich die langsamere Grenzschicht vom Objekt und es entsteht eine Strömung, die das Objekt abbremst. Durch die runden Dellen auf der Oberfläche des Golfballs entstehen kleinere Turbulenzen, die der Grenzschicht mehr Energie geben. Sie bewegt sich schneller und kann dem Objekt länger folgen. Der Luftwiderstand reduziert sich um fast die Hälfte.

Wie sich diese Eigenschaften des Golfballs auf andere dreidimensionale Objekte und Materialien übertragen lassen, hat drei Wissenschaftler am Massachusetts Institute of Technology (MIT) in Cambridge interessiert. Ihre Ergebnisse veröffentlichten Pedro Reis, Denis Terwagne und Miha Brojan nun im Journal „Advanced Materials“. „Es gibt bereits zahlreiche Studien über Unebenheiten und Falten auf glatten Oberflächen“, erklärt Reis. „Aber es ist bisher wenig darüber bekannt, wie sich Falten auf gekurvten Oberflächen verhalten.“

Der „Dimple-Effekt“ kann an- oder abgeschaltet werden

Reis und seine Kollegen bauten für ihre Versuche einen kleinen, innen hohlen Ball, dessen Oberfläche aus zwei Polymer-Materiallagen besteht. Dabei ist das innere Polymer weicher als die äußere Schicht. Wird nun die Luft aus dem Ball gesaugt, zieht sich die äußere Polymer-Lage zusammen. Das Ergebnis sieht aus wie ein Golfball mit Dimples. „Wir haben den geschrumpften Ball systematisch im Windtunnel getestet und eine ähnliche Verringerung im Luftwiderstand wie bei einem echten Golfball gemessen“, sagt Pedro Reis.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
Schleifring GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W3-Professur "Life Cycle Engineering" Hochschule Aalen - Technik und Wirtschaft
August Storck KG-Firmenlogo
Leiter (m/w/d) Prozess- und Methodenmanagement August Storck KG
Ohrdruf Zum Job 
Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH-Firmenlogo
Teamleiter Development Engineering / Entwicklungsingenieur (m/w/d) Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH
Nürnberg, Homeoffice möglich Zum Job 
JACOBS DOUWE EGBERTS DE GmbH-Firmenlogo
Project Engineer (w|m|d) JACOBS DOUWE EGBERTS DE GmbH
Elmshorn Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Entwicklungsingenieur (w/m/d) Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Technische Universität Berlin-Firmenlogo
Universitätsprofessur - BesGr. W3 für Werkzeugmaschinen und Fertigungstechnik an der Fakultät V Technische Universität Berlin
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) für die Entwicklung von medizinischen Kunststoffeinmalartikeln B. Braun Melsungen AG
Melsungen Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Plasmaphysik-Firmenlogo
Ingenieur*in der Fachrichtung Elektrotechnik Max-Planck-Institut für Plasmaphysik
Greifswald Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH
maxon motor GmbH-Firmenlogo
Prozessingenieur (w/m/d) für Qualität in Entwicklungsprojekten | Antriebstechnik maxon motor GmbH
Sexau bei Freiburg im Breisgau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Universität Heidelberg-Firmenlogo
Elektroingenieur*in in der Elektronikentwicklung (w/m/d) Universität Heidelberg
Heidelberg Zum Job 

Das Spannende an ihrer Materialforschung sei aber eigentlich, so die Forscher, dass sie den Innendruck des Balls und damit auch seine Oberfläche kontrollieren könnten. „Die Umkehrbarkeit des Prozesses macht ihn spannend“, sagt Reis. „Wir können den Effekt, den die Oberfläche auf den Luftwiderstand hat, an- oder abstellen.“ „Smart morphable surfaces“, also kluge wandelbare Oberflächen, oder kurz „smorphs“ haben die Wissenschaftler ihre Entdeckung getauft.

Smorphs könnten bei Kuppeln oder Autos zum Einsatz kommen

Mögliche Anwendungen für ihre „smorphs“ haben die Forscher auch bereits entdeckt. Viele Radarantennen seien beispielsweise unter großen Kuppeln untergebracht, die oft starken Stürmen ausgesetzt sind. Wenn der Wind zu stark wird, könnte eine solche Kuppel ihre Oberfläche verändern und so den Luftwiderstand verringern. Eine weitere Verwendung könnte Materialien für den Autobau betreffen. Je nach Fahrgeschwindigkeit würde die äußere Hülle des Autos seine Form verändern. Die Dellen würden zu einem geringeren Luftwiderstand führen, der sich auch positiv auf den Spritverbrauch auswirkt.

 

Ein Beitrag von:

  • Gudrun von Schoenebeck

    Gudrun von Schoenebeck

    Gudrun von Schoenebeck ist seit 2001 journalistisch unterwegs in Print- und Online-Medien. Neben Architektur, Kunst und Design hat sie sich vor allem das spannende Gebiet der Raumfahrt erschlossen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.