Angewandte Mathematik 15.05.2013, 16:00 Uhr

Geheimnis der Seifenblasen entschlüsselt

Das komplexe Verhalten von Seifenblasen in einem Schaum vorherzusagen, war bislang unmöglich. Jetzt haben amerikanische Mathematiker ein Gleichungsmodell vorgelegt, mit dem sie die Vorgänge im Schaum perfekt simulieren können.

Die kleine computergenerierte Ansammlung von Bläschen simuliert täuschend echt die Abläufe in echtem Schaum.

Die kleine computergenerierte Ansammlung von Bläschen simuliert täuschend echt die Abläufe in echtem Schaum.

Foto: Saye,Sethian/Berkeley University

Schön, delikat und vergänglich sind sie, die Schaumhauben auf dem Cappuccino und  dem frisch gezapften Bier. Ihr alltägliches Vorkommen macht sie allerdings aus wissenschaftlicher Sicht nicht weniger komplex. Bisher tat sich die Wissenschaft schwer damit, das komplizierte Verhalten der kleinen Schaumblasen, ihr Entstehen und Zerplatzen, in einem mathematischen Modell zu erfassen.

Zwei Wissenschaftlern im Fach der Angewandten Mathematik von der University in California, Berkeley, ist dies nun gelungen. „Es ist schwierig die mathematischen Modelle für Schäume zu entwickeln. Sie bestehen aus einzelnen Blasen, die sich oft gemeinsame Wände teilen und immer in Bewegung sind. Zudem sind die extrem unterschiedlichen Maßstäbe eine echte Herausforderung“, sagt James Sethian. Der Mathematikprofessor und sein Doktorand Robert Saye identifizierten zunächst drei wichtige Phasen in der Schaum-Entstehung.

Top Stellenangebote

Zur Jobbörse
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Projektmanagement Hochspannung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (m/w/d) für Straßenausstattungsanlagen und Verkehrsführung Die Autobahn GmbH des Bundes
Osnabrück Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) konstruktiver Ingenieurbau Die Autobahn GmbH des Bundes
Kassenärztliche Vereinigung Baden-Württemberg-Firmenlogo
Bauingenieur TGA (m/w/d) im Bereich der Gebäudesanierung und Instandhaltung Kassenärztliche Vereinigung Baden-Württemberg
Stuttgart Zum Job 
Albert Handtmann Maschinenfabrik GmbH & Co. KG-Firmenlogo
Entwicklungsingenieur (m/w/d) Vakuumfüller Albert Handtmann Maschinenfabrik GmbH & Co. KG
Biberach an der Riß Zum Job 
DHBW Duale Hochschule Baden-Württemberg Stuttgart Campus Horb-Firmenlogo
Professur (m/w/d) für Maschinenbau (Schwerpunkt: Versorgungs- und Energiemanagement) DHBW Duale Hochschule Baden-Württemberg Stuttgart Campus Horb
Horb am Neckar Zum Job 
Kreis Pinneberg-Firmenlogo
Ingenieur*in / Fachplaner*in für Technische Gebäudeausrüstung (m/w/d) Kreis Pinneberg
Elmshorn Zum Job 
Stadtwerke Leipzig GmbH-Firmenlogo
Ingenieur (m/w/d) Apparatetechnik Stadtwerke Leipzig GmbH
Leipzig Zum Job 
Cummins Deutschland GmbH-Firmenlogo
Controls Engineer (m/w/d) - Hourly Cummins Deutschland GmbH
Marktheidenfeld Zum Job 
CoorsTek GmbH-Firmenlogo
Prozessingenieur / Ingenieur (m/w/d) Produktion CoorsTek GmbH
Mönchengladbach Zum Job 
Stadtwerke München GmbH-Firmenlogo
Spezialist für Steuerungen im intelligenten Stromnetz mittels Smart Meter (m/w/d) Stadtwerke München GmbH
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur als Abteilungsleitung Planung (w/m/d) Die Autobahn GmbH des Bundes
Kempten (Allgäu) Zum Job 
Herrenknecht AG-Firmenlogo
Projektcontroller (m/w/d) Herrenknecht AG
Collins Aerospace HS Elektronik Systeme GmbH-Firmenlogo
Senior Entwicklungsingenieur (m/w/d) Mechanik Collins Aerospace HS Elektronik Systeme GmbH
Nördlingen Zum Job 
Bohle Isoliertechnik GmbH-Firmenlogo
Projektleiter (m/w/d) Isoliertechnik Bohle Isoliertechnik GmbH
Pastetten Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Verkehrsingenieur:in im Bereich Behörden-Genehmigungsmangement (w/m/d) Berliner Wasserbetriebe
ZVEI e. V. Verband der Elektro- und Digitalindustrie-Firmenlogo
Manager/in Automotive und Mobilität 4.0 (w/m/d) ZVEI e. V. Verband der Elektro- und Digitalindustrie
Berlin, Frankfurt am Main Zum Job 
Nord-Micro GmbH & Co. OHG-Firmenlogo
Qualitätsingenieur (m/w/d) Nord-Micro GmbH & Co. OHG
Frankfurt am Main Zum Job 
Nord-Micro GmbH & Co. OHG-Firmenlogo
Production Engineer (m/w/d) Nord-Micro GmbH & Co. OHG
Frankfurt am Main Zum Job 
Südzucker AG-Firmenlogo
Trainee Verfahrenstechnik / Chemieingenieurwesen / Chemie / Maschinenbau (m/w/d) Südzucker AG
verschiedene Standorte Zum Job 

Die Dynamik im Schaum ändert sich permanent

Zunächst arrangieren sich die Bläschen in neuen Formationen, dann fließt die Flüssigkeit über die dünnen Wände ab und schliesslich werden die Membrane so fein, dass die Blase platzt. „Die Dynamik im Schaum ändert sich dann noch einmal, je nach Anzahl der Bläschen darin“, erklärt Sethian. Die Wissenschaftler mussten also die Vorgänge in den Wänden der einzelnen Bläschen mathematisch beschreiben, aber auch die Prozesse und Wechselwirkungen im gesamten Schaumgebilde berücksichtigen.

Dafür teilten die Mathematiker die komplexe Problematik in etliche Gleichungen auf, die jeweils unterschiedliche Vorgänge im Schaum erfassen. Ein Satz von Gleichungen beschreibt, wie die Flüssigkeit durch die Einwirkung der Schwerkraft die Blasenwände hinabläuft und sie dadurch immer weiter ausdünnt. Ein zweiter Gleichungssatz befasst sich mit den Strömungen an den Kontaktstellen der einzelnen Blasen untereinander. Ein dritter erfasst die wackelige Umstrukturierung der Blasen im Schaum, nachdem eine oder mehrere geplatzt sind. Um eine möglichst realistische Simulation von Seifenblasen im Computer zu produzieren, fügten die Forscher zudem einen Satz Gleichungen hinzu, der die bunten, vom Licht auf der Blasenoberfläche erzeugten Schlieren nachbildet.

Ein Supercomputer rechnete an den Gleichungen fünf Tage lang

Um diesen kombinierten Satz von Gleichungen in eine naturnahe Simulation umzuwandeln, rechnete der Supercomputer am Lawrence Berkeley National Laboratory (LBNL) fünf Tage lang. Jetzt können die Mathematiker eine Schaumkugel aus mehreren Bläschen in einem computergenerierten Video täuschend echt imitieren. In der bewegten Simulation schwebt sie im Raum und ordnet sich immer wieder neu, wenn einzelne Blasen zerplatzen.

Die Anwendung ihres neuen Gleichungssatzes können sich die Wissenschaftler in der Praxis gut vorstellen. „Unsere Erkenntnisse helfen bei der Herstellung und beim Mischen von Schäumen aus Kunststoff und Metallen, aber auch bei der Modellierung von wachsenden Zellclustern“, erklärt Sethian. Auch für die Herstellung von Hartschäumen, wie sie etwa in Fahrradhelmen benutzt werden, könnten die vernetzten Gleichungen hilfreich sein. Generell lassen sie sich immer dann nutzen, wenn es darum geht, die Bewegungen einer großen Zahl von dynamischen Grenzflächen zu beschreiben, die miteinander verbunden sind.

 

Ein Beitrag von:

  • Gudrun von Schoenebeck

    Gudrun von Schoenebeck

    Gudrun von Schoenebeck ist seit 2001 journalistisch unterwegs in Print- und Online-Medien. Neben Architektur, Kunst und Design hat sie sich vor allem das spannende Gebiet der Raumfahrt erschlossen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.