Angewandte Mathematik 15.05.2013, 16:00 Uhr

Geheimnis der Seifenblasen entschlüsselt

Das komplexe Verhalten von Seifenblasen in einem Schaum vorherzusagen, war bislang unmöglich. Jetzt haben amerikanische Mathematiker ein Gleichungsmodell vorgelegt, mit dem sie die Vorgänge im Schaum perfekt simulieren können.

Die kleine computergenerierte Ansammlung von Bläschen simuliert täuschend echt die Abläufe in echtem Schaum.

Die kleine computergenerierte Ansammlung von Bläschen simuliert täuschend echt die Abläufe in echtem Schaum.

Foto: Saye,Sethian/Berkeley University

Schön, delikat und vergänglich sind sie, die Schaumhauben auf dem Cappuccino und  dem frisch gezapften Bier. Ihr alltägliches Vorkommen macht sie allerdings aus wissenschaftlicher Sicht nicht weniger komplex. Bisher tat sich die Wissenschaft schwer damit, das komplizierte Verhalten der kleinen Schaumblasen, ihr Entstehen und Zerplatzen, in einem mathematischen Modell zu erfassen.

Zwei Wissenschaftlern im Fach der Angewandten Mathematik von der University in California, Berkeley, ist dies nun gelungen. „Es ist schwierig die mathematischen Modelle für Schäume zu entwickeln. Sie bestehen aus einzelnen Blasen, die sich oft gemeinsame Wände teilen und immer in Bewegung sind. Zudem sind die extrem unterschiedlichen Maßstäbe eine echte Herausforderung“, sagt James Sethian. Der Mathematikprofessor und sein Doktorand Robert Saye identifizierten zunächst drei wichtige Phasen in der Schaum-Entstehung.

Die Dynamik im Schaum ändert sich permanent

Zunächst arrangieren sich die Bläschen in neuen Formationen, dann fließt die Flüssigkeit über die dünnen Wände ab und schliesslich werden die Membrane so fein, dass die Blase platzt. „Die Dynamik im Schaum ändert sich dann noch einmal, je nach Anzahl der Bläschen darin“, erklärt Sethian. Die Wissenschaftler mussten also die Vorgänge in den Wänden der einzelnen Bläschen mathematisch beschreiben, aber auch die Prozesse und Wechselwirkungen im gesamten Schaumgebilde berücksichtigen.

Dafür teilten die Mathematiker die komplexe Problematik in etliche Gleichungen auf, die jeweils unterschiedliche Vorgänge im Schaum erfassen. Ein Satz von Gleichungen beschreibt, wie die Flüssigkeit durch die Einwirkung der Schwerkraft die Blasenwände hinabläuft und sie dadurch immer weiter ausdünnt. Ein zweiter Gleichungssatz befasst sich mit den Strömungen an den Kontaktstellen der einzelnen Blasen untereinander. Ein dritter erfasst die wackelige Umstrukturierung der Blasen im Schaum, nachdem eine oder mehrere geplatzt sind. Um eine möglichst realistische Simulation von Seifenblasen im Computer zu produzieren, fügten die Forscher zudem einen Satz Gleichungen hinzu, der die bunten, vom Licht auf der Blasenoberfläche erzeugten Schlieren nachbildet.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
JACOBS DOUWE EGBERTS DE GmbH-Firmenlogo
Project Engineer (w|m|d) JACOBS DOUWE EGBERTS DE GmbH
Elmshorn Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W3-Professur "Life Cycle Engineering" Hochschule Aalen - Technik und Wirtschaft
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Entwicklungsingenieur (w/m/d) Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Technische Universität Berlin-Firmenlogo
Universitätsprofessur - BesGr. W3 für Werkzeugmaschinen und Fertigungstechnik an der Fakultät V Technische Universität Berlin
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) für die Entwicklung von medizinischen Kunststoffeinmalartikeln B. Braun Melsungen AG
Melsungen Zum Job 
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Technische*r Mitarbeiter*in bzw. Ingenieur*in (m/w/d) in einer ingenieurwissenschaftlichen Fachrichtung mit dem Schwerpunkt Elektronik / Mikroelektronik oder vergleichbar Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Johns Manville Europe GmbH-Firmenlogo
Technology Leader (m/w/d) Nonwovens Europe Johns Manville Europe GmbH
Wertheim Zum Job 
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Promovierte*r wissenschaftliche*r Mitarbeiter*in (m/w/d) einer natur- oder ingenieurwissenschaftlichen Fachrichtung Bundesanstalt für Materialforschung und -prüfung
Berlin-Adlershof Zum Job 
Rimowa GmbH-Firmenlogo
Senior Project Manager R&D (m/f/d) Rimowa GmbH
ROTHENBERGER Werkzeuge GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Rohrwerkzeuge und Rohrbearbeitungsmaschinen ROTHENBERGER Werkzeuge GmbH
Kelkheim Zum Job 
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Schleifring GmbH-Firmenlogo
Projektingenieur (m/w/d) Key Account in der Elektronikbranche Schleifring GmbH
Fürstenfeldbruck Zum Job 
Funkwerk Systems GmbH-Firmenlogo
Leiter Entwicklungsabteilung (m/w/d) Funkwerk Systems GmbH
Kölleda Zum Job 
maxon motor GmbH-Firmenlogo
Prozessingenieur (w/m/d) für Qualität in Entwicklungsprojekten | Antriebstechnik maxon motor GmbH
Sexau bei Freiburg im Breisgau Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH
PARI Pharma GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Medizintechnik PARI Pharma GmbH
Gräfelfing bei München Zum Job 
Max-Planck-Institut für Kognitions- und Neurowissenschaften-Firmenlogo
HF-Ingenieur*in (m/w/d) als technische*r oder wissenschaftliche*r Mitarbeiter*in Max-Planck-Institut für Kognitions- und Neurowissenschaften
Leipzig Zum Job 

Ein Supercomputer rechnete an den Gleichungen fünf Tage lang

Um diesen kombinierten Satz von Gleichungen in eine naturnahe Simulation umzuwandeln, rechnete der Supercomputer am Lawrence Berkeley National Laboratory (LBNL) fünf Tage lang. Jetzt können die Mathematiker eine Schaumkugel aus mehreren Bläschen in einem computergenerierten Video täuschend echt imitieren. In der bewegten Simulation schwebt sie im Raum und ordnet sich immer wieder neu, wenn einzelne Blasen zerplatzen.

Die Anwendung ihres neuen Gleichungssatzes können sich die Wissenschaftler in der Praxis gut vorstellen. „Unsere Erkenntnisse helfen bei der Herstellung und beim Mischen von Schäumen aus Kunststoff und Metallen, aber auch bei der Modellierung von wachsenden Zellclustern“, erklärt Sethian. Auch für die Herstellung von Hartschäumen, wie sie etwa in Fahrradhelmen benutzt werden, könnten die vernetzten Gleichungen hilfreich sein. Generell lassen sie sich immer dann nutzen, wenn es darum geht, die Bewegungen einer großen Zahl von dynamischen Grenzflächen zu beschreiben, die miteinander verbunden sind.

 

Ein Beitrag von:

  • Gudrun von Schoenebeck

    Gudrun von Schoenebeck

    Gudrun von Schoenebeck ist seit 2001 journalistisch unterwegs in Print- und Online-Medien. Neben Architektur, Kunst und Design hat sie sich vor allem das spannende Gebiet der Raumfahrt erschlossen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.