Graphen-Schaum ist so viel stabiler als Stahl
Graphen ist wirklich ein Wundermaterial: Jetzt ist es gelungen, einen Schaum aus Graphen herzustellen mit ganz erstaunlichen Eigenschaften. Der Schaum ist zwar federleicht, aber um ein Vielfaches stabiler als Stahl. Wie das kommt?
Graphen ist ein zweidimensionales Nanomaterial. Nur eine Atomlage dick besitzt die Kohlenstoffvariante lediglich in Breite und Länge eine Ausdehnung. Forscher des Massachusetts Institute of Technology (MIT) haben jetzt ein schwammartiges Material aus Graphen konstruiert, das nur rund fünf Prozent der Dichte von Stahl besitzt, aber zehnmal so stark ist. Es wurde mit einem hochauflösenden 3D-Drucker hergestellt.
Lücken in der Erforschung
Zwar gilt Graphen ja ohnehin unter anderem wegen seiner Härte als Wundermaterial, doch ist es bisher nur teilweise gelungen, diese Stabilität auf nutzbare dreidimensionale Graphen-Materialien zu übertragen.
Einer der Gründe dafür: Bisher war nicht bekannt, welche Eigenschaften ein dreidimensionaler Graphen-Schaum braucht, um leicht und doch stabil zu sein. Das wollten Prof. Zhao Qin und seine MIT-Kollegen herausfinden und untersuchten dafür die Struktur von Schäumen und Gittern aus Graphen.
Graphen-Würfel mit Löchern
Dafür konstruierte das MIT-Team zunächst mithilfe sehr genauer Computermodelle einen Graphen-Würfel. Die Forscher schweißten 500 Blättchen des zweidimensionalen Graphen-Gitters mit 500 kugelförmigen Platzhaltern unter Hitze und hohem Druck zu dreidimensionalen, porösen Strukturen zusammen. Dabei lösten sich die Platzhalter auf, so dass an ihrer Stelle Hohlräume zurückblieben.
Dünnere Wände stabiler als dickere
Durch die Löcher ergibt sich ein Plus an Oberflächenstruktur, was dem Konstrukt Festigkeit verleiht, andererseits sorgen die Hohlräume für ein niedriges Gewicht. Tests ergaben, dass dieser Graphen-Schaum zehnmal stabiler und zugfester ist als Stahl, obwohl er nur fünf Prozent von dessen Dichte besitzt.
Es zeigte sich bei den Tests aber auch, dass es die Würfel mit dünneren Wänden waren, die sich deutlich stabiler zeigten, als diejenigen mit dickeren Wänden. Letztere explodierten förmlich, als die Gewichte auf sie drückten. Die dünnere Variante hingegen behielt ihre Form und fiel kontrolliert zusammen.
Großes Potenzial
Die MIT-Forscher erklären das Versuchsergebnis damit, dass die dickeren Wände die durch den Druck ausgeübte Kraft als Spannungsenergie speichern und dann auf einmal freigeben, während die dünneren Wände kontinuierlich verformt werden. Ihre Erkenntnis: Graphen spielt zwar als Material für die Härte eine Rolle, aber entscheidender ist die geometrische Form.
„Man kann das Graphen durch irgendein anderes Material ersetzen. Die Geometrie ist der dominante Faktor. Sie hat das Potenzial, viele Dinge zu verändern“, sagt Markus Buehler, Chef der Abteilung Civil and Environmental Engineering am MIT.
So könnte die vom MIT entwickelte Struktur auch für Kunststoffe und Metalle genutzt werden, um ultraleichte, widerstandsfähige Materialien zu kreieren, etwa für den Bau von Brücken. Superleichte und ultrastabile Materialien wären auch optimal einsetzbar im Flugzeug- und Automobilbau gewünscht. Und nicht nur da.
Kleinste Glühlampe der Welt
Sie möchten mehr über Graphen erfahren? Hier stellen wir Ihnen eine industriefähige Lösung zur Produktion von Graphen vor, die von Forschern aus Aachen und Jülich entwickelt wurde.
Und an dieser Stelle berichten wir über die kleinste Glühlampe der Welt, die aus einem Graphenfilament zwischen zwei Elektroden besteht. Das Material hält Temperaturen von mehreren Tausend Grad Celsius aus.
Ein Beitrag von: