Entladungen kontrollieren 25.06.2015, 08:43 Uhr

Mit Laserstrahler: Forscher zähmen Blitze

Im Labor haben Forscher den Blitz gezähmt: Mit Laserstrahlen zwangen die Wissenschaftler elektrische Hochspannungsentladungen auf einen genau festgelegten Weg. Sogar in Kreisbögen und S-Profile konnten sie die künstlichen Blitzen zwingen. Diese Technologie wird Lichtbogen-Anwendungen verbessern.

Blitze wechseln spontan ihre Richtung. Es scheint unmöglich, diese zu zähmen und ihren Weg zu kontrollieren. Im Labor ist Wissenschaftlern das Kunststück jetzt gelungen.

Blitze wechseln spontan ihre Richtung. Es scheint unmöglich, diese zu zähmen und ihren Weg zu kontrollieren. Im Labor ist Wissenschaftlern das Kunststück jetzt gelungen.

Foto: Julian Stratenschulte/dpa

Wer schon einmal ein Gewitter genau beobachtet hat: Blitze wechseln spontan ihre Richtung. Auf ihrem Weg vom Himmel zur Erde verästeln und teilen sie sich, bilden Ableger und zucken um die Ecke. Es scheint unmöglich, diese gewaltigen Energiebündel in eine kontrollierte Bahn zu zwingen. Genau das ist jetzt Forschern des Nationalen Forschungsinstituts Kanadas gelungen.

Es sind Blitze von wenigen Zentimeter Länge im Labor, die sie auf eine festgelegte Entladungsbahn zwingen, beschreiben die kanadischen Wissenschaftler im Fachmagazin „Science Advances“. Dieses Kunststück vollbringen die Forscher mit Laserstrahlen.

„Die Entladung folgt dem Weg des geringsten Widerstands“

Die Laserenergie ionisiert die Luft. So erzeugen die Wissenschaftler einen Kanal, in dem sich die elektrische Entladung leichter ausbreiten kann als in der umgebenden Luft. „Die Entladung folgt nun dem Weg des geringsten Widerstands“, erklären die Forscher um Matteo Clerici vom Nationalen Forschungsinstitut in Quebec. Sie denken bei ihren Experimenten nicht an die Blitze während eines Gewitters.

Ihnen geht es um Entladungen zwischen Elektroden, wie sie in der Industrie und in der Forschung genutzt werden. Denn bei diesen sind zwar der Start- und Endpunkt der Entladung definiert. Auf dem Weg dazwischen verhält sich jedoch auch der Entladungsblitz gerne chaotisch. „Es ist daher enorm wichtig, Methoden zu entwickeln, durch die wir die Bahn der Lichtbögen vollkommen kontrollieren können“, schreiben die Wissenschaftler um Matteo Clerici.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Solventum Germany GmbH-Firmenlogo
Prozessingenieur Automatisierungstechnik / Mechatronik / Maschinenbau (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W2-Professur "Lasermaterialbearbeitung" Hochschule Aalen - Technik und Wirtschaft
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Plasmaphysik-Firmenlogo
Ingenieur*in der Fachrichtung Elektrotechnik Max-Planck-Institut für Plasmaphysik
Greifswald Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
Max-Planck-Institut für Astronomie-Firmenlogo
Astronom*in / Physiker*in / Ingenieur*in (m/w/d) für Adaptive Optik Max-Planck-Institut für Astronomie
Heidelberg Zum Job 
Max-Planck-Institut für Kernphysik-Firmenlogo
Bauingenieur oder Architekt (w/m/d) Max-Planck-Institut für Kernphysik
Heidelberg Zum Job 
Karlsruher Institut für Technologie-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) im Bereich mechanische Entwicklung und Projektleitung Karlsruher Institut für Technologie
Eggenstein-Leopoldshafen Zum Job 

Gepulster Laserstrahl ionisiert die Luft

Um einen solchen Entladungsblitz zu kontrollieren, fokussierten sie im Raum zwischen zwei Metallspitzen einen mit 50 Femtosekunden gepulsten Laserstrahl, der eine Breite von zehn Millimetern hatte. An den Spitzen legten die Forscher eine geringe Spannung von nur 37 kV an, so dass es keine Entladung geben konnte. Normalerweise ist in einem solchen Aufbau eine Spannung von etwa 170 kV nötig, damit ein Funke überspringt. Die Laserpulse liefen dicht an den Metallspitzen vorbei. Es entstand ein Plasmakanal mit reduzierter Teilchendichte. Das genügte: Es kam zu einer Entladung, die dem Weg des geringsten Widerstands folgte.

Bessel-Strahl wirkte auf den Blitz wie eine Fernsteuerung

Allerdings nahm die Entladung nicht den kürzesten Weg, sondern erlaubte sich einen Zickzackkurs. Jetzt griffen die Wissenschaftler in die Trickkiste der Optik. Sie positionierten in den Laserstrahl ein Axicon, das ist eine flache, konisch geschliffene Linse. Diese macht aus dem gewöhnlichen Laserstrahl einen Bessel-Strahl. Der Trick wirkte auf den Entladungsblitz wie eine Fernsteuerung. Er zog eine schnurgerade Linie zwischen den beiden Elektrodenspitzen.

Von links kommt ein Lichtstrahl (bläuliche Line), der eine Elektrodenspitze passiert (0 cm) und auf ein Hindernis trifft (1,5 cm), das ihn ausblendet. Bei 2,3 cm hat sich der Strahl selbst geheilt und setzt seinen Weg fort. In dem von ihm erzeugten Plasmakanal (0 – 1,5 cm und 2,3 – 5 cm) kommt es zur elektrischen Entladung. Im Zwischenbereich (1,5 – 2,3 cm), wo noch kein Lichtstrahl vorliegt, wählt die Entladung ihren Weg in zufälliger Weise.

Von links kommt ein Lichtstrahl (bläuliche Line), der eine Elektrodenspitze passiert (0 cm) und auf ein Hindernis trifft (1,5 cm), das ihn ausblendet. Bei 2,3 cm hat sich der Strahl selbst geheilt und setzt seinen Weg fort. In dem von ihm erzeugten Plasmakanal (0 – 1,5 cm und 2,3 – 5 cm) kommt es zur elektrischen Entladung. Im Zwischenbereich (1,5 – 2,3 cm), wo noch kein Lichtstrahl vorliegt, wählt die Entladung ihren Weg in zufälliger Weise.

Quelle: M. Clerici et al.

Ein Bessel-Strahl ändert während der Ausbreitung seine Form nicht. Und: Die Forscher konnten demonstrieren, dass sie mit Hilfe der Bessel-Strahlen auch gekrümmte Lichtbögen herstellen können, die gezielt Hindernisse umstrahlen. Mit einer Kombination mehrerer Laserstrahlen erzeugten sie sogar S-förmige Blitze.

„Diese Technologie ebnet den Weg zu einer systematischen und präzisen Kontrolle von Hochspannungs-Entladungen“, konstatieren Clerici und seine Kollegen. „Das eröffnet eine ganz Reihe von neuen Möglichkeiten sowohl für wissenschaftliche als auch für technische Anwendungen.“ Die bisherige Beschränkung auf wenige Zentimeter sind nicht in Stein gemeißelt – die Forscher jedenfalls sind optimistisch, dass mit ihrer Technologie auch größere Anordnungen beherrschbar sind.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.