Industrie 28.10.2011, 12:05 Uhr

Produktregeneration: Teure Investitionsgüter wieder fit machen

Komplexe Investitionsgüter künftig so wieder herzustellen, dass deren Wert für den Benutzer maximiert wird, das ist Ziel aktueller Untersuchungen. Typische Beispiele für die Anwendung von Regenerationsverfahren sind stationäre Turbomaschinen und Windenergieanlagen. Die Automation von Reparaturen soll zudem die Reproduzierbarkeit verbessern.

„Die Zuverlässigkeit älterer, wieder instand gesetzter oder instand gehaltener fossiler Kraftwerke ist heute sehr hoch, d. h. unvorhergesehene Ausfälle dieser Kraftwerke sind selten“, weiß Prof. Jörg Seume vom Institut für Turbomaschinen und Fluid-Dynamik (TFD) der Leibniz Universität Hannover. Allein durch die kürzeren Instandhaltungszyklen bei älteren Kraftwerken reduziere sich aber bereits ihre Verfügbarkeit.

Seume: „Eine weitere Erhöhung der Zuverlässigkeit von Kraftwerken hat demzufolge darauf abzuzielen, dass Maschinen weniger häufig ausfallen, was auch für ältere Maschinen und Anlagen durchaus möglich ist.“ Erreicht werde das z. B. durch vorbeugende Instandhaltung, durch verbesserte Betriebsüberwachung oder durch moderne Methoden der Vorhersage des Verschleißes.

Sonderforschungsbereich erarbeitet wissenschaftliche Grundlagen für Produktregeneration

Wissenschaftliche Grundlagen dazu werden im Sonderforschungsbereich (SFB) 871 „Regeneration komplexer Investitionsgüter“ erarbeitet. In Projektbereichen geht es dabei um die Zustandsaufnahme und Befundung, die Wechselwirkung zwischen Fertigungsprozessen und Produkteigenschaften, die Berücksichtigung der produktions- und materialbedingten Varianz in der Produktentstehung sowie die ganzheitliche Steuerung der Prozesse.

Ziel aktueller Regenerationstechnologien muss es laut Seume sein, die funktionalen Eigenschaften des Regenerationsgutes wiederherzustellen und möglichst zu verbessern.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Schleifring GmbH-Firmenlogo
Projektingenieur (m/w/d) Key Account in der Elektronikbranche Schleifring GmbH
Fürstenfeldbruck Zum Job 
JACOBS DOUWE EGBERTS DE GmbH-Firmenlogo
Project Engineer (w|m|d) JACOBS DOUWE EGBERTS DE GmbH
Elmshorn Zum Job 
Johns Manville Europe GmbH-Firmenlogo
Technology Leader (m/w/d) Nonwovens Europe Johns Manville Europe GmbH
Wertheim Zum Job 
Funkwerk Systems GmbH-Firmenlogo
Leiter Entwicklungsabteilung (m/w/d) Funkwerk Systems GmbH
Kölleda Zum Job 
Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Process and Particle Engineering-Firmenlogo
Professorship for Particle Engineering and Solids Processing Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Process and Particle Engineering
Graz, Austria Zum Job 
Rimowa GmbH-Firmenlogo
Senior Project Manager R&D (m/f/d) Rimowa GmbH
ROTHENBERGER Werkzeuge GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Rohrwerkzeuge und Rohrbearbeitungsmaschinen ROTHENBERGER Werkzeuge GmbH
Kelkheim Zum Job 
HygroMatik GmbH-Firmenlogo
Junior Entwicklungsingenieur für Hard- und Softwarelösungen (m/w/d) HygroMatik GmbH
Henstedt-Ulzburg Zum Job 
RENOLIT SE-Firmenlogo
Ingenieur (m/w/d) Kunststoff- / Verfahrenstechnik / Chemie RENOLIT SE
Frankenthal Zum Job 
FUNKE Wärmeaustauscher Apparatebau GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) FUNKE Wärmeaustauscher Apparatebau GmbH
Gronau (Leine) Zum Job 
Horn Hartstoffe GmbH-Firmenlogo
Prozessingenieur/-entwickler (m/w/d) Werkstoff- und Verfahrenstechnik Horn Hartstoffe GmbH
Tübingen Zum Job 
Kromberg & Schubert GmbH & Co.KG-Firmenlogo
Entwicklungsingenieur | Schaltplan (m/w/d) Kromberg & Schubert GmbH & Co.KG
Renningen bei Stuttgart Zum Job 
Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in im Bereich Materialprüfung und Überwachungstechnik Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV
Dresden Zum Job 
IMS Röntgensysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) für digitale Inspektionssysteme IMS Röntgensysteme GmbH
Heiligenhaus Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Applikationsingenieur DED / Additive Fertigung (m/w/d) pro-beam GmbH & Co. KGaA
Gilching bei München Zum Job 
PARI Pharma GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Medizintechnik PARI Pharma GmbH
Gräfelfing bei München Zum Job 
EuropTec GmbH-Firmenlogo
Mitarbeiter Prozessentwicklung (m/w/d) EuropTec GmbH
THD - Technische Hochschule Deggendorf-Firmenlogo
Lehrgebiet "Elektronik und Hochfrequenztechnik" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
THD - Technische Hochschule Deggendorf-Firmenlogo
Professorin / Professor (m/w/d) für das Lehrgebiet "Ingenieursinformatik/Embedded Systems" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH-Firmenlogo
Teamleiter Development Engineering / Entwicklungsingenieur (m/w/d) Nash - Zweigniederlassung der Gardner Denver Deutschland GmbH
Nürnberg, Homeoffice möglich Zum Job 

Aktuelle Herausforderungen bestünden indes darin, dass der Anteil an verschrotteten Komponenten recht hoch sei, es nur wenige, unflexible Regenerationsverfahren gebe und viele davon händisch abliefen und daher schlecht reproduzierbar seien. Noch seien zudem erfahrungsbasierte Einzelfallentscheidungen die Regel.

Bei Industriegasturbinen werden Verschleißteile eher repariert als ersetzt

Beispiele für die aktuelle Anwendung von Regenerationsverfahren sind der Bereich der stationären Turbomaschinen und derjenige der Windenergieanlagen. Holger Berghaus, Head of Service Engineering Gas Turbines der MAN Diesel & Turbo, Augsburg, verdeutlichte dazu: „Die Anforderungen an den Originalhersteller bei der Reparatur von Gasturbinen sind vielfältig: Durchlaufzeit, Kosten und z. B. die Möglichkeit der Durchführung in einer lokalen Werkstatt sind nur einige der Parameter, die den Prozess beeinflussen.“ Bei Industriegasturbinen seien z. B. Neuteile anstelle von Reparaturen für OEM – Original Equipment Manufacturer – in der Regel nicht sinnvoll.

Wenn es um die Einflussfaktoren Kosten versus kurzer Stillstandszeit gehe, falle die Entscheidung jedoch meist zugunsten der Zeit aus. Zudem veränderten neue Werkstoffe und Fertigungsverfahren die Rahmenbedingungen. Beim Blisk-Verfahren (Blade Integrated Disk) werden z. B. Scheiben mit bis zu 120 einzelnen Schaufeln durch ein Blisk ersetzt, wodurch die Montagekosten entfallen und eine erhebliche Gewichtsersparnis erzielt werden könne.

Produktregeneration: Lösungen für hochbeanspruchte Bauteile in Offshore-Windanlagen finden

Auch bei Offshore-Windenergieanlagen gilt es laut Holger Huhn, Leiter der Abteilung „Zuverlässigkeit von Winderenergieanlagen“ des Fraunhofer-Instituts für Windenergie und Energiesystemtechnik (IWES), Lösungen für die hochbeanspruchten Bauteile zu finden. Am häufigsten seien dabei das elektrische System, die Sensoren und das Kontrollsystem von Störungen betroffen. Diese Fehlerquellen hätten im Gegensatz zu Schäden im Antriebsstrang zwar für sich genommen geringe Stillstandszeiten zur Folge. Im Hinblick auf eine Steigerung der Zuverlässigkeit der Anlagen empfahl Huhn jedoch eine Kombination von zuverlässigkeits- und zustandsorientierten Instandhaltungsstrategien.

Beim Fraunhofer Innovationsclusters „Maintenance, Repair and Overhaul (MRO) in Energie und Verkehr“ am Fraunhofer IPK in Berlin wird indes an flexiblen und zuverlässigen MRO-Technologien gearbeitet. Insbesondere roboterbasierte Reparaturverfahren gelten hier als aussichtsreich.

Ein Beitrag von:

  • Anette Weingärtner

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.