Alte Theorie bestätigt 10.03.2025, 10:15 Uhr

Quanten-Tornados erstmals experimentell nachgewiesen

Forschende aus Würzburg und Dresden konnten Quanten-Tornados erstmals experimentell nachweisen: Ein erweitertes Messverfahren bestätigt eine acht Jahre alte Theorie über Elektronen-Wirbel im Impulsraum.

Quanten-Tornado im Impulsraum

Die Grafik zeigt einen Quanten-Tornado im Impulsraum.

Foto: think-design | Jochen Thamm

Ein internationales Forschungsteam hat erstmals Quanten-Tornados experimentell nachgewiesen. Elektronen in Quantenmaterialien können Wirbelstrukturen ausbilden, doch bisher war dieses Phänomen nur im sogenannten Ortsraum nachgewiesen worden.

Nun gelang es Wissenschaftlerinnen und Wissenschaftlern unter der Leitung von Dr. Maximilian Ünzelmann vom Exzellenzcluster ct.qmat, diese Wirbel auch im Impulsraum nachzuweisen. Damit wurde eine acht Jahre alte theoretische Vorhersage bestätigt. Die Entdeckung könnte wichtige Impulse für die Weiterentwicklung von Quantentechnologien liefern.

Quantenwirbel im Impulsraum: Was bedeutet das?

Elektronen in Quantenmaterialien verhalten sich nicht wie klassische Teilchen, sondern zeigen komplexe quantenmechanische Effekte. Der Impulsraum ist ein Konzept in der Physik, das nicht den konkreten Aufenthaltsort eines Elektrons beschreibt, sondern dessen Bewegungsrichtung und Energie. Während Wirbelstrukturen in der klassischen Physik im Ortsraum auftreten, war unklar, ob sie auch im Impulsraum existieren können. Die aktuellen Experimente liefern nun den ersten direkten Beweis dafür.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
THD - Technische Hochschule Deggendorf-Firmenlogo
Professorin / Professor (m/w/d) für das Lehrgebiet "Ingenieursinformatik/Embedded Systems" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
TU Bergakademie Freiberg-Firmenlogo
W3-Professur "Fels- und Gebirgsmechanik/Felsbau" TU Bergakademie Freiberg
Freiberg Zum Job 
RENOLIT SE-Firmenlogo
Ingenieur (m/w/d) Kunststoff- / Verfahrenstechnik / Chemie RENOLIT SE
Frankenthal Zum Job 
FUNKE Wärmeaustauscher Apparatebau GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) FUNKE Wärmeaustauscher Apparatebau GmbH
Gronau (Leine) Zum Job 
Schleifring GmbH-Firmenlogo
Projektingenieur (m/w/d) Key Account in der Elektronikbranche Schleifring GmbH
Fürstenfeldbruck Zum Job 
Kromberg & Schubert GmbH & Co.KG-Firmenlogo
Entwicklungsingenieur | Schaltplan (m/w/d) Kromberg & Schubert GmbH & Co.KG
Renningen bei Stuttgart Zum Job 
IMS Röntgensysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) für digitale Inspektionssysteme IMS Röntgensysteme GmbH
Heiligenhaus Zum Job 
HygroMatik GmbH-Firmenlogo
Junior Entwicklungsingenieur für Hard- und Softwarelösungen (m/w/d) HygroMatik GmbH
Henstedt-Ulzburg Zum Job 
Funkwerk Systems GmbH-Firmenlogo
Leiter Entwicklungsabteilung (m/w/d) Funkwerk Systems GmbH
Kölleda Zum Job 
Horn Hartstoffe GmbH-Firmenlogo
Prozessingenieur/-entwickler (m/w/d) Werkstoff- und Verfahrenstechnik Horn Hartstoffe GmbH
Tübingen Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Applikationsingenieur DED / Additive Fertigung (m/w/d) pro-beam GmbH & Co. KGaA
Gilching bei München Zum Job 
Performa Nord Eigenbetrieb des Landes Bremen-Firmenlogo
Leitende:r Sicherheitsingenieur:in (w/m/d) für die Freie Hansestadt Bremen (FHB) Performa Nord Eigenbetrieb des Landes Bremen
Narda Safety Test Solutions GmbH-Firmenlogo
Entwicklungsingenieur für Antennen- und HF-Design (m/w/d) Narda Safety Test Solutions GmbH
Pfullingen Zum Job 
HygroMatik GmbH-Firmenlogo
Entwicklungsingenieur für Hard- und Softwarelösungen (m/w/d) HygroMatik GmbH
Henstedt-Ulzburg Zum Job 
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH-Firmenlogo
Entwicklungsingenieur / Wissenschaftlicher Mitarbeiter (w/m/d) Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Hochschule Reutlingen-Firmenlogo
W2-PROFESSUR (m/w/x) Fertigungstechnologien und Qualitätsmanagement Hochschule Reutlingen
Reutlingen Zum Job 
Leuze electronic GmbH + Co. KG-Firmenlogo
Experienced Mechanical Engineer (m/f/x) Leuze electronic GmbH + Co. KG
Owen bei Kirchheim / Teck Zum Job 
Narda Safety Test Solutions GmbH'-Firmenlogo
Entwicklungsingenieur Hardware (m/w/d) Narda Safety Test Solutions GmbH'
Pfullingen Zum Job 
EuropTec GmbH-Firmenlogo
Mitarbeiter Prozessentwicklung (m/w/d) EuropTec GmbH
THD - Technische Hochschule Deggendorf-Firmenlogo
Lehrgebiet "Elektronik und Hochfrequenztechnik" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
THD - Technische Hochschule Deggendorf-Firmenlogo
Professorin / Professor (m/w/d) für das Lehrgebiet "Ingenieursinformatik/Embedded Systems" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
TU Bergakademie Freiberg-Firmenlogo
W3-Professur "Fels- und Gebirgsmechanik/Felsbau" TU Bergakademie Freiberg
Freiberg Zum Job 
RENOLIT SE-Firmenlogo
Ingenieur (m/w/d) Kunststoff- / Verfahrenstechnik / Chemie RENOLIT SE
Frankenthal Zum Job 
FUNKE Wärmeaustauscher Apparatebau GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) FUNKE Wärmeaustauscher Apparatebau GmbH
Gronau (Leine) Zum Job 

Die Entdeckung zeigt, dass Elektronen unter bestimmten Bedingungen eine wirbelartige Struktur annehmen. Dies ist vergleichbar mit Luft- oder Wasserwirbeln in der klassischen Physik, findet jedoch auf einer subatomaren Ebene statt. Das besondere daran: Die Elektronen bilden diese Wirbel nicht im physischen Raum, sondern in einem abstrakten, mathematisch beschriebenen Raum, dem Impulsraum. Dieser ist entscheidend für das Verständnis von elektronischen Eigenschaften in Materialien und spielt eine wesentliche Rolle in der Quantenphysik.

Theorie wird zur Praxis

Bereits vor acht Jahren hatte Roderich Moessner, Gründungsmitglied von ct.qmat, die Existenz solcher Quanten-Tornados theoretisch vorhergesagt. Er beschrieb sie als „Rauchringe“, da sie ähnlich aufgebaut sind. Bislang fehlte jedoch eine experimentelle Methode, um sie nachzuweisen. Nun gelang dies mit einem erweiterten Verfahren der winkelaufgelösten Photoemissionsspektroskopie (ARPES).

Ünzelmann erläutert: „ARPES ist eine bewährte Methode in der Festkörperphysik. Sie erlaubt es, die elektronische Struktur eines Materials direkt zu untersuchen, indem herausgelöste Elektronen analysiert werden. Durch eine gezielte Erweiterung des Verfahrens konnten wir den orbitalen Bahndrehimpuls der Elektronen erfassen und die Wirbelstrukturen sichtbar machen.“ Der entscheidende Fortschritt lag in der Kombination von ARPES mit einer speziellen Quanten-Tomographie, die eine dreidimensionale Darstellung der Elektronenstrukturen ermöglichte.

Fortschritte durch innovative Messtechnik

Schon 2021 hatte das Team mit ARPES einen bahnbrechenden Nachweis orbitaler Monopole in Tantal-Arsenid erbracht. Nun kombinierten die Forschenden diese Methode mit einer speziellen Quanten-Tomographie. Dabei wurde die Materialprobe schichtweise untersucht, um ein dreidimensionales Bild der Elektronenstrukturen zu erstellen. „Die Ergebnisse zeigten eindeutig, dass sich die Elektronen im Impulsraum zu einem Tornado formieren“, so Ünzelmann weiter.

Auch interessant:

Die Methode basiert auf dem sogenannten Photoeffekt, der bereits von Albert Einstein beschrieben wurde. Dabei werden Elektronen durch gezielte Lichtbestrahlung aus einem Material herausgelöst. Die Messung von Energie und Winkel der herausgelösten Teilchen gibt Aufschluss über ihre Bewegungsdynamik im Material. Durch gezielte Erweiterungen dieser Technik konnte das Forschungsteam erstmals den wirbelartigen Drehimpuls der Elektronen sichtbar machen.

Globale Zusammenarbeit für neue Quantentechnologien

Der Nachweis des Quanten-Tornados ist das Ergebnis einer internationalen Kooperation. Die Materialprobe aus Tantal-Arsenid wurde in den USA gezüchtet, während die Messungen an der Forschungsanlage PETRA III des DESY in Hamburg stattfanden. Theoretische Analysen kamen unter anderem von Wissenschaftlern aus China, die experimentelle Umsetzung wurde von Forschenden aus Norwegen begleitet. Matthias Vojta, Sprecher des Exzellenzclusters ct.qmat, betont: „Dieser Erfolg zeigt die Stärke unseres Netzwerks. Die enge Zusammenarbeit von Theorie und Experiment sowie die internationale Vernetzung sind entscheidend für den Fortschritt in der Quantenforschung.“

Das Team arbeitete eng mit anderen Forschungsgruppen zusammen, um die Messungen zu verifizieren und mögliche Fehlerquellen auszuschließen. Dies ist besonders wichtig, da Quanteneffekte oft extrem empfindlich sind und nur unter speziellen Bedingungen auftreten. Die enge Kooperation verschiedener Forschungseinrichtungen ermöglichte eine präzise Bestätigung der Ergebnisse.

Perspektiven für die Orbitronik

Die Entdeckung hat nicht nur wissenschaftliche Relevanz, sondern könnte auch praktische Anwendungen ermöglichen. Die Forschenden hoffen, dass das wirbelartige Verhalten der Elektronen in Zukunft die Grundlage für die sogenannte Orbitronik bilden kann. Diese Technologie nutzt nicht die elektrische Ladung, sondern das orbitale Drehmoment der Elektronen zur Informationsverarbeitung. Das könnte den Energieverbrauch von elektronischen Bauteilen erheblich reduzieren. Aktuell untersuchen die Wissenschaftlerinnen und Wissenschaftler, ob sich Tantal-Arsenid für orbitronische Quantenbauteile eignet.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.