Quantenlicht 28.03.2020, 16:13 Uhr

Starkes und schnelles Licht dank „On-Demand-Superfluoreszenz“

Gewisse Materialien leuchten, wenn sie angeregt werden. Leider reagieren die Teilchen nie gleichzeitig. Durch Nanokristallgitter ist es Forschern gelungen, den Effekt „on demand“ zu synchronisieren und die Lichtstärke so zu vervielfachen – das könnte LED- oder Quantentechnik deutlich voranbringen.

Viele einzelne kleine Lichtquellen sind zu sehen vor schwarzem Hintergrund.

Bei einer Superfluoreszenz kooperieren die Licht-aussendenden Teilchen miteinander und erzeugen eine Lichtstärke, die um ein Vielfaches höher ist, als die Summe der Einzelquellen.

Foto: PantherMedia 6130434

Bestimmte Gase und Quantensystems leuchten, wenn sie von einer externen Quelle, zum Beispiel einem Laser, dazu angeregt werden. Dieses als Fluoreszenz bezeichnete Phänomen ist jedoch viel schwächer als es sein könnte. Denn die einzelnen Teilchen leuchten in der Regel nie gleichzeitig. Wissenschaftler von der ETH Zürich, Eidgenössischen Materialprüfungs- und Forschungsanstalt (Empa) und von IBM Research Zürich konnten die Lichtemissionen nun deutlich verstärken, indem sie die Fluoreszenz der einzelnen Teilchen durch geordnete Nanokristall-Strukturen synchronisierten.

Superfluoreszenz auf Knopfdruck

Der Effekt, den sie hierbei künstlich und „auf Knopfdruck“ erzeugten, wird als Superfluoreszenz bezeichnet. Hierbei kooperieren die einzelnen Licht-aussendenden Teilchen miteinander und erzeugen eine Lichtstärke, die um ein Vielfaches höher ist als die Summe der Einzelquellen. Das entstehende Licht ist extrem schnell und intensiv. Die im renommierten Fachmagazin „Nature“ veröffentlichte Entwicklung könnte die nächste Generation der LED-Technik ebenso beeinflussen wie Quantensensorik, -kommunikation und -computik.

Denn bisher war die gezielte Superfluoreszenz bei technisch eingesetzten Materialien nicht möglich, da der Effekt nur dann auftritt, wenn alle Lichtquellen die gleiche Emissionsenergie haben, stark miteinander gekoppelt sind und die Kohärenzzeit groß genug ist. Unter diesen Voraussetzungen interagieren die einzelnen Teilchen stark miteinander und werden zugleich weniger durch ihre Umgebung gestört. Sogenannte kolloidale Quantenpunkte bringen genau diese Voraussetzungen mit. Und sie werden schon heute kommerziell eingesetzt, etwa in der neuesten Generation von LCD-Fernsehdisplays.

Superfluoreszenz durch dreidimensionales Nanokristallgitter

Das Wissenschaftler-Team um Maksym Kovalenko hat nun gezeigt, dass sich durch Quantenpunkte, die aus Bleihalogenid-Perowskit bestehen, gezielt Superfluoreszenzen erzeugen lassen. Hierzu bauten sie die Perowskit-Quantenpunkte zu einem dreidimensionalen Übergitter auf, das die gleichzeitige Emission von Licht ermöglicht. Bei einem Übergitter (engl. superlattice) handelt es sich um einen künstlichen Festkörper, der aus einer Abfolge dünner Schichten aufgebaut ist, die sich wiederholen.  Es bildet die Grundlage dafür, dass sich die Licht-aussendenden Bestandteile verschränken.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
HARTMANN-Firmenlogo
Konstrukteur / Entwicklungsingenieur (w/m/d) HARTMANN
Heidenheim Zum Job 
Adolf Würth GmbH & Co. KG-Firmenlogo
Elektroingenieur (m/w/d) Fahrzeugeinrichtung Adolf Würth GmbH & Co. KG
Obersulm-Willsbach Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
durlum Group GmbH-Firmenlogo
Konstruktionsingenieur (m/w/d) durlum Group GmbH
Schopfheim Zum Job 
über RSP Advice Unternehmensberatung-Firmenlogo
Technische Leitung (m/w/d) über RSP Advice Unternehmensberatung
Schleifring GmbH-Firmenlogo
Testingenieur für die Produktqualifikation (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
HAWK Hochschule Hildesheim/Holzminden/Göttingen-Firmenlogo
Laboringenieur*in im Bereich Elektro- und Messtechnik/Gebäudeautonomie HAWK Hochschule Hildesheim/Holzminden/Göttingen
Holzminden Zum Job 
Tagueri AG-Firmenlogo
(Junior) Consultant Funktionale Sicherheit (m/w/d)* Tagueri AG
Stuttgart Zum Job 
ANDRITZ Separation GmbH-Firmenlogo
Automatisierungsingenieur (m/w/d) für Dynamic Crossflow-Filter ANDRITZ Separation GmbH
Vierkirchen Zum Job 
Neovii Biotech GmbH-Firmenlogo
Qualification Engineer (m/w/d) Neovii Biotech GmbH
Gräfelfing Zum Job 
Fresenius Kabi-Firmenlogo
Director (m/w/d) Operations Media Supply, Formulation & API Fishoil Fresenius Kabi
Friedberg / Hessen Zum Job 
Sauer Compressors-Firmenlogo
Entwicklungsingenieur (m/w/d) Sauer Compressors
Heidrive GmbH-Firmenlogo
Entwicklungsingenieur Elektrotechnik (m/w/d) Heidrive GmbH
Kelheim Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Ingenieur (w/m/d) Verfahrenstechnik / Chemie / Physik als Entwicklungsingenieur Nitto Advanced Film Gronau GmbH
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundeswehr
verschiedene Standorte Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Mobilität und Digitalisierung | Mobilitätskonzepte (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Universität Duisburg-Essen Campus Duisburg-Firmenlogo
13 positions for PhD candidates (f/m/d) Universität Duisburg-Essen Campus Duisburg
Duisburg Zum Job 

Hierfür mussten sie Quantenpunkte schaffen, die allesamt gleich groß, gleich geformt und gleich zusammengesetzt waren. Denn auch für das Universum gilt im Sinne einer optimalen Verschränkung der Quantenteilchen: Gleich und Gleich gesellt sich gern. Die Produktion derart gleicher Quantenpunkte habe man in den letzten Jahren optimiert, so die Empa-Forscherin Maryna Bodnarchuk. Aus den erzeugten Quantenpunkten bauten die Forscher dann das Übergitter auf.

„Lichttests“ erfolgreich – bei minus 267 Grad Celsius

Die „Lichttests“ führten sie bei Temperaturen von minus 267 Grad Celsius durch. Und tatsächlich: Alle Einzelquellen leuchteten gleichzeitig. „Das war unser Heureka-Moment, als wir erkannten, dass es sich um eine neuartige Quantenlichtquelle handelt“, so Gabriele Rainò von der ETH Zürich und der Empa, der an der Durchführung der Experimente maßgeblich beteiligt war.

Die Wissenschaftler wollen die kollektiven Quanteneigenschaften der eingesetzten Materialien künftig weiter nutzen. Da die erzeugten Effekte deutlich größer seien, als die Summe der Einzelteile, könnten Superfluoreszenz und Quantenlicht die Entwicklung von Quanteninformatik, Quantensensorik und quantenverschlüsselter Kommunikation deutlich voranbringen, resümieren die Wissenschaftler.

Ein Beitrag von:

  • Thomas Kresser

    Thomas Kresser macht Wissenschafts- und Medizinjournalismus für Publikumsmedien, Fachverlage, Forschungszentren, Universitäten und Kliniken. Er ist geschäftsführender Gesellschafter von ContentQualitäten und Geschäftsführer von DasKrebsportal.de. Seine Themen: Wissenschaft, Technik, Medizin/Medizintechnik und Gesundheit.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.