Forschungszentrum Jülich 07.02.2024, 14:33 Uhr

Theorien in der Physik: Ist der nächste Einstein eine KI?

Die ganz Großen in der Physik wurden dadurch berühmt, dass sie eine Theorie aufgestellt haben – man denke an Newton oder Einstein. Forschende haben nun eine KI programmiert, die das ebenfalls können soll.

Albert Einstein

Das Bild wurde ebenfalls mittels KI erzeugt, in diesem Fall mit der generativen Bild-KI Stable Diffusion.

Foto: Forschungszentrum Jülich

Die Entwicklung neuer Theorien wird oft mit herausragenden Persönlichkeiten der Physik wie Newton oder Einstein in Verbindung gebracht, für die zahlreiche Nobelpreise verliehen wurden. Forscherinnen und Forscher des Forschungszentrums Jülich haben jetzt eine künstliche Intelligenz entwickelt, die eventuell ähnliche Leistungen vollbringen kann. Die KI soll in der Lage sein, Muster in komplexen Datensätzen zu erkennen und daraus physikalische Theorien abzuleiten.

Wie entsteht eine neue Theorie?

Prof. Moritz Helias vom Jülicher Institute for Advanced Simulation (IAS-6) erklärt: „Üblicherweise geht man von Beobachtungen des Systems aus, und versucht, einen Vorschlag zu machen, wie die verschiedenen Systemkomponenten miteinander interagieren, um das beobachtete Verhalten zu erklären. Dann leitet man neue Vorhersagen daraus ab, und prüft diese. Ein bekanntes Beispiel ist das Gravitationsgesetz von Isaac Newton. Es beschreibt nicht nur die Anziehungskraft auf der Erde. Auch die Bewegungen von Planeten, Monden und Kometen lassen sich damit – genau wie die Bahnen moderner Satelliten – ziemlich exakt vorhersagen“.

Die Entwicklung solcher Hypothesen kann laut Prof. Helias auf verschiedenen Wegen erfolgen: Zum einen könne man von allgemeinen physikalischen Prinzipien und Grundgleichungen ausgehen, um eine Hypothese zu formulieren. Zum anderen ist ein phänomenologischer Ansatz möglich, der sich darauf konzentriert, Beobachtungen möglichst genau zu beschreiben, ohne notwendigerweise deren Ursachen zu ergründen. Die Herausforderung besteht darin, aus der Vielzahl der möglichen Ansätze den geeignetsten auszuwählen und ihn gegebenenfalls anzupassen und zu vereinfachen.

Was steckt hinter Physik-KI?

Die Arbeitsgruppe verfolgte einen Ansatz, den sie „Physics for Machine Learning“ nannte. Dabei verwendet die Gruppe physikalische Methoden, um zu analysieren und zu verstehen, wie künstliche Intelligenz (KI) funktioniert. Claudia Merger aus der Gruppe hatte die Idee, ein neuronales Netz zu verwenden, das darauf trainiert ist, komplexes beobachtetes Verhalten auf ein einfacheres System zu projizieren.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Solventum Germany GmbH-Firmenlogo
Prozessingenieur Automatisierungstechnik / Mechatronik / Maschinenbau (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Celonic Deutschland GmbH & Co. KG-Firmenlogo
Technical Team Manager (w/m/d) Qualification & Asset Change Control Celonic Deutschland GmbH & Co. KG
Heidelberg Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Physikalische Ingenieurwissenschaft, Produktionstechnik, Werkstoffwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Hochschule Aalen - Technik und Wirtschaft-Firmenlogo
W2-Professur "Lasermaterialbearbeitung" Hochschule Aalen - Technik und Wirtschaft
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
Neoperl GmbH-Firmenlogo
Ingenieur / Meister / Techniker (m/w/d) Prozess-, Automatisierungs- und Elektrotechnik Neoperl GmbH
Müllheim Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 
Universität Heidelberg-Firmenlogo
Elektroingenieur*in in der Elektronikentwicklung (w/m/d) Universität Heidelberg
Heidelberg Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Plasmaphysik-Firmenlogo
Ingenieur*in der Fachrichtung Elektrotechnik Max-Planck-Institut für Plasmaphysik
Greifswald Zum Job 
Patent- und Rechtsanwälte Andrejewski, Honke-Firmenlogo
Ausbildung zum deutschen Patentanwalt (m/w/d) und European Patent Attorney Patent- und Rechtsanwälte Andrejewski, Honke
maxon motor GmbH-Firmenlogo
Prozessingenieur (w/m/d) für Qualität in Entwicklungsprojekten | Antriebstechnik maxon motor GmbH
Sexau bei Freiburg im Breisgau Zum Job 
Atlantic GmbH-Firmenlogo
Werksleiter Endbearbeitung Schleifscheiben und Honsteine (m/w/d) Atlantic GmbH
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 

Das Hauptziel besteht laut Prof. Helia darin, die vielfältigen komplexen Interaktionen zwischen den Systemkomponenten durch KI vereinfachen zu lassen. Anschließend wird die KI genutzt, um eine Rückabbildung des vereinfachten Systems auf das komplexe System zu erstellen. Während dieses Rückprozesses rekonstruiert das Forschungsteam schrittweise die komplexen Interaktionen aus den einfacheren Elementen und entwickelt so eine neue Theorie.

Wie Prof. Helia erklärt, ähnelt diese Methode grundsätzlich der Vorgehensweise von Physikern, mit dem Unterschied, dass die Zusammensetzung der Wechselwirkungen aus den Parametern der KI abgeleitet wird. Dieser Ansatz, die Welt durch die Interaktion ihrer Teile zu erklären, die bestimmten Gesetzen folgen, ist ein Grundprinzip der Physik. Das Forschungsteam verwendet daher den Begriff „Physics of AI“.

Einsatz der KI in der Praxis

In ihrer Doktorarbeit untersuchte Claudia Merger vom Forschungszentrum Jülich einen Datensatz von Schwarz-Weiß-Bildern mit handgeschriebenen Zahlen, der häufig in der Forschung mit neuronalen Netzen verwendet wird.  Sie konzentrierte sich darauf, wie kleine Bildunterstrukturen, insbesondere die Ränder der Zahlen, durch Interaktionen zwischen Pixeln entstehen. Dabei identifizierte sie Gruppen von Pixeln, die dazu neigen, gemeinsam aufzuhellen und so zur Bildung der Zahlenränder beitragen.

Prof. Helia erläutert, dass der Einsatz von künstlicher Intelligenz es erst ermöglicht, komplexe Berechnungen mit einer enormen Anzahl von möglichen Wechselwirkungen durchzuführen. Ohne diesen Trick könnten nur sehr kleine Systeme untersucht werden. Trotz der Fortschritte durch KI ist der Rechenaufwand für die Analyse großer Systeme nach wie vor hoch. Dies liegt an der Vielzahl möglicher Wechselwirkungen innerhalb dieser Systeme.

Durch effiziente Parametrisierung sei es jedoch möglich, Systeme mit bis zu tausend interagierenden Komponenten zu analysieren, erklärt Prof. Helia. Zum Beispiel Bildbereiche mit bis zu 1000 Pixeln. In Zukunft könnten durch weitere Optimierungen sogar noch wesentlich größere Systeme bearbeitet werden.

Worin unterscheidet sich Physik-KI von ChatGPT?

Viele KIs haben das Ziel, aus ihren Trainingsdaten zugrundeliegende Theorien zu erlernen. Diese Theorien sind jedoch oft nicht direkt zugänglich oder interpretierbar, da sie in den Parametern der KI verborgen bleiben. Der Ansatz des Forschungszentrums Jülich zielt dagegen darauf ab, die von der KI erlernten Theorien explizit zu machen, wie Prof. Helia erklärt.

Das Forscherteam formuliert die Theorien in einer Sprache, die auf den Wechselwirkungen zwischen den Systemkomponenten beruht, ähnlich den Prinzipien der Physik. Dieser Ansatz fällt in den Bereich der Erklärbaren Künstlichen Intelligenz (Explainable AI), genauer gesagt in den Bereich „Physics of AI“. Das Team nutzt physikalische Konzepte, um die Erkenntnisse der KI verständlich zu machen. Dieser Ansatz ermöglicht es, die komplexe Funktionsweise der KI mit für Menschen verständlichen Theorien zu verknüpfen.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.