TU Wien präsentiert die erste Atomkern-Uhr der Welt
Die TU Wien hat die weltweit erste Atomkern-Uhr entwickelt. Sie könnte die Zukunft der Zeitmessung und auch die Physik verändern.
Nach jahrzehntelanger Forschung ist es nun soweit: Die Technische Universität Wien (TU Wien) präsentiert die weltweit erste Atomuhr. Ein Team um Professor Thorsten Schumm hat in Zusammenarbeit mit dem Joint Institute for Laboratory Astrophysics (JILA) und dem National Institute of Standards and Technology (NIST) in den USA einen Prototypen entwickelt. Diese Uhr basiert auf der Manipulation von Atomkernen mit Laserstrahlen und könnte die Präzision der Zeitmessung auf ein völlig neues Niveau heben.
Lasersteuerung von Atomkernen: Der Schlüssel zum Erfolg
Im April dieses Jahres gelang es dem Team erstmals, einen Atomkern mit einem Laser gezielt von einem Zustand in einen anderen zu schalten. Diese Technik ermöglicht hochpräzise Messungen und ebnete den Weg für die Entwicklung der Atomuhr.
Nur wenige Wochen später folgte der nächste Meilenstein: Die Forschenden kombinierten eine optische Atomuhr mit einem Hochenergielasersystem und einem Kristall, der Thorium-Atomkerne enthält. Damit war der Grundstein für die weltweit erste Atomkern-Uhr gelegt.
Wie funktioniert eine Atomkern-Uhr?
Jede Uhr benötigt einen Taktgeber, um die Zeit zu messen. Während mechanische Uhren das Schwingen eines Pendels nutzen, setzen heutige Präzisionsuhren auf elektromagnetische Wellen und die Schwingungen eines Laserstrahls. Diese Schwingungen müssen jedoch regelmäßig justiert werden, da sich die Frequenz eines Lasers im Laufe der Zeit leicht verändern kann.
„Deshalb benötigt man zusätzlich zum Laser ein Quantensystem, das äußerst empfindlich auf eine ganz bestimmte Laserfrequenz reagiert“, erklärt Professor Schumm. Atome wie Cäsium oder Strontium sind typische Kandidaten, da ihre Elektronen auf Laserlicht spezifischer Frequenzen reagieren. Ändert sich die Laserfrequenz, so passen die Atome ihre Reaktion an, und der Laser kann entsprechend nachjustiert werden. Diese Technik ermöglicht eine äußerst stabile Frequenz und bildet das Fundament herkömmlicher Atomuhren.
Höhere Präzision durch neue Technologie
Die Vision, diese Methode auf Atomkerne zu übertragen, besteht schon seit Jahrzehnten. Atomkerne sind um ein Vielfaches kleiner als Atome und weniger anfällig für äußere Störungen wie elektromagnetische Felder. Damit wäre eine noch präzisere Zeitmessung möglich. Allerdings erfordert die Manipulation von Atomkernen wesentlich mehr Energie als die von Atomen. Eine Ausnahme bildet der Thoriumkern, der Zustände vergleichbarer Energie aufweist und daher mit Lasern geschaltet werden kann.
„Damit das gelingt, muss man die Energiedifferenz zwischen diesen beiden Zuständen aber sehr genau kennen“, sagt Schumm. Die Bestimmung dieser Differenz war eine Herausforderung, an der sich Wissenschaftlerinnen und Wissenschaftler weltweit seit Jahren die Zähne ausbissen. Der Durchbruch gelang dem Team im April, und nur wenige Wochen später wurde diese Erkenntnis praktisch umgesetzt.
Technologie trifft auf Präzision: Das „optische Getriebe“ und der Frequenzkamm
Die Kombination der JILA-Atomuhr mit Thorium-Atomkernen erforderte innovative Ansätze. „Die Atomuhr arbeitet mit Laserlicht im Infrarot-Bereich, damit werden Strontium-Atome angeregt. Unsere Thorium-Atomkerne allerdings brauchen Strahlung im UV-Bereich“, erklärt Schumm. Ein „optisches Getriebe“, das Infrarot- in UV-Frequenzen übersetzt, war die Lösung. Dazu verwendete das Forschungsteam ultrakurze Infrarot-Laserpulse, die ein Spektrum verschiedener Infrarot-Frequenzen erzeugen – ähnlich den Zähnen eines Kamms, daher der Begriff „Frequenzkamm“.
Dieses Infrarotlicht trifft auf Xenon-Gas, das daraufhin UV-Licht aussendet. Das UV-Licht wird dann auf einen winzigen Kristall fokussiert, der Thorium-Atomkerne enthält. „Dieser Kristall ist gewissermaßen das Herzstück des Experiments“, sagt Schumm. Er wurde am Atominstitut der TU Wien in jahrelanger Arbeit entwickelt.
Potenzielle Anwendungen: Präzisionsrekorde und fundamentale Physik
Mit der neuen Technologie konnten die Forschenden die Energieniveaus der Thoriumzustände bereits um Größenordnungen genauer messen. „Als wir den Übergang erstmals angeregt haben, konnten wir die Frequenz auf einige Gigahertz genau bestimmen. Das war bereits um mehr als einen Faktor tausend besser als alles, was davor bekannt war. Jetzt aber haben wir eine Präzision im Bereich von Kilohertz – also noch einmal eine Million Mal besser“, sagt Schumm. Diese Fortschritte könnten laut Schumm schon in zwei bis drei Jahren zu Atomuhren führen, die die derzeit genauesten Systeme übertreffen.
Die Atomuhr wird laut Forschungsteam nicht nur die Zeitmessung revolutionieren. Auch andere physikalische Größen könnten mit dieser Technologie wesentlich genauer bestimmt werden. Mögliche Anwendungen reichen von der Geologie über die Astrophysik bis hin zur Grundlagenforschung. Mit dieser extremen Präzision könnte untersucht werden, ob fundamentale Naturkonstanten tatsächlich konstant sind oder sich in Raum und Zeit verändern.
Ein Beitrag von: