Virtueller Spaziergang durch Deutschlands größten Fusionsreaktor
Normalsterbliche können den größten Fusionsreaktor der Welt vom Typ Stellarator nie betreten. Im Wendelstein 7-X werden Temperaturen von 100 Millionen Grad erzeugt. Doch wenigstens virtuell kann man den Reaktor in Greifswald jetzt erkunden. Und bekommt von den Wissenschaftlern erklärt, wie der Reaktor funktioniert.
Wer die Einladung annimmt, virtuell durch den weltweit größte Fusionsreaktor vom Typ Stellarator zu spazieren, der stolpert von einem faszinierenden Blick zum nächsten. Das Max-Planck-Institut für Plasmaphysik in Garching bei München hat Wendelstein 7-X in Greifswald an der Ostsee gebaut. Er ist die Vorstufe zu einer Anlage, die Strom durch Fusion erzeugt, das Verschmelzen der Wasserstoffarten (Isotope) Deuterium und Tritium.
Was normalerweise streng abgeschottet ist, wird jetzt anschaulich. Die Forscher haben eine interaktive Homepage ins Netz gestellt, die einen tiefen Einblick in die Anlage gewährt.
Bizarr geformtes Plasmagefäß
Es beginnt mit einem langsamen Schwenk durch den Torusraum, in dessen Zentrum der Reaktor steht. Das ist ein ringförmiger, bizarr geformter Behälter, das so genannte Plasmagefäß. „Gehe ins Plasmagefäß“ lautet ein Button. Wer ihn anklickt, gelangt dahin, wo im Betrieb eine Temperatur von 100 Millionen Grad Celsius herrscht.
In dem silbrig glänzenden Raum hockt die Physikerin Dorothea Gradic. Sie erklärt in einfachen Worten, was dort geschieht, wenn Wendelstein 7-X läuft. Fusionen finden dann noch nicht statt. Erhitzt wird lediglich Wasserstoff, der sich dabei in ein Plasma verwandelt. Elektronen und Atomkerne trennen sich voneinander, so dass die Wolke magnetisch beeinflussbar ist. Das ist nötig, damit das Plasma die Wände der Kammer nicht berührt. Derartigen Temperaturen hält natürlich kein Werkstoff stand.
Grafit-Kleid für die Wand
Es passiert allerdings immer wieder, dass einzelne Teilchen ausbüxen und einzelne Atome aus der Wand schlagen. Diese senken die Temperatur des Plasmas, so dass der – in späteren Versuchen stattfindende – Fusionsprozess gestoppt wird. Dagegen helfen Divertoren, die während des jüngsten Umbaus installiert wurden, erfährt man unter dem Button „Ein Grafit-Kleid für die Wand“. Divertoren sind Verkleidungen aus Grafit. Die kühlende Wirkung von Kohlenstoffteilchen, die bei Kollisionen mit dem Plasma herausgeschlagen werden, ist nicht so groß wie die von Metallpartikeln.
„Gehe in den Strahlenkanal“ ist ein anderer Button. Hier gelangt man in einen Bereich, in dem drei verschiedene Heizsysteme dafür sorgen, dass die benötigte Temperatur erreicht wird. Eine davon ist ein Mikrowellensystem, das genauso funktioniert wie der gleichnamige Küchenhelfer. Die zehn installierten Sender kommen auf eine Leistung von gigantischen 8500 Kilowatt. Die Geräte, die in der Küche eingesetzt werden, erreichen meist nicht mehr als ein Kilowatt. Eingeschleust wird die Leistung durch runde Fenster aus synthetischem Diamant mit einem Durchmesser von 90 Millimetern. Auf den Weg gebracht werden die Mikrowellen mit Hilfe von zahlreichen Spiegeln.
50 supraleitende Spulen
Die bizarre Form des Plasmagefäßes kann man kaum erahnen. Es wird von 50 nicht minder bizarr geformten supraleitenden Spulen verhüllt. Diese haben eine Betriebstemperatur von minus 270 Grad Celsius. Strom fließt in ihnen vollkommen widerstandslos. Sie bilden ein Magnetfeld, das das Plasma wie ein Käfig umschließt, so dass es nicht mit den Wänden in Berührung kommt.
2015 war es den Forschern erstmals nach 20 Jahren vorbereitender Arbeiten gelungen, im Wendelstein 7-X ein Plasma aus Helium zu erzeugen. Helium wurde genutzt, weil das leichter funktioniert als ein Plasma aus Wasserstoff. Ein Plasma aus Wasserstoff gelang den Forschern 2016 erstmals – eine Viertel Sekunde lang. Die erreichte Temperatur betrug 80 Millionen Grad Celsius.
Wer sich durch alle Bilder geklickt hat – meist lassen sich die Darstellungen noch heranzoomen –, weiß in etwa, wie die Hightech-Maschine in der Hansestadt an der Ostsee funktioniert. Und es macht Spaß, in die Geheimnisse der Fusionsreaktoren einzudringen. Das Institut hat bereits Erfahrung mit interaktiven Begehungen von Fusionsanlagen. Asdex, ein Fusionsexperiment vom Typ Tokamak, das in Garching steht, lässt sich ebenfalls virtuell besuchen.
Ein Beitrag von: