Was passiert eigentlich beim Knallen der Sektkorken physikalisch?
Über Weihnachten und zum Jahreswechsel werden wieder vielerorts die Sektkorken knallen. Doch was passiert dabei eigentlich physikalisch? Die TU Wien hat sich damit beschäftigt.
Wahrscheinlich haben sich die wenigsten schon einmal mit der Physik beschäftigt, die sich hinter dem Knallen der Sektkorken verbirgt. Die ist aber auch gar nicht so trivial, wie ein Forschungsteam der TU Wien herausgefunden hat. Es steckt weit mehr als ein kräftiges „Plopp“ dahinter, das durch den hohen Druck in der Sektflasche verursacht wird, wenn der Korken mit großer Geschwindigkeit in Richtung Decke fliegt. Schauen wir uns daher an, wie das Team vorgegangen ist, um die Physik des Sektkorkenknallens zu entschlüsseln.
Schneller als der Schall
Das Institut für Strömungsmechanik und Wärmeübertragung der Technischen Universität Wien hat in Zusammenarbeit mit dem privaten Österreichischen Kompetenzzentrum für Tribologie (AC2T) eine Forschungslücke geschlossen: Durch detaillierte Computersimulationen gelang die mathematisch-numerische Analyse des Verhaltens von Korken und Gasströmungen.
Während frühere Experimente sich auf Hochgeschwindigkeits-Kameras stützten, ermöglichten diese Simulationen neue Erkenntnisse. Es zeigte sich, dass sich eine Überschall-Stoßwelle bildet und der Gasstrom dabei Geschwindigkeiten von mehr als dem Eineinhalbfachen der Schallgeschwindigkeit erreichen kann. Diese Erkenntnisse sind auch für andere Bereiche relevant, insbesondere bei Gasströmungen um ballistische Objekte wie Projektile oder Raketen.
Gas überholt den Korken
„Der Sektkorken selbst fliegt mit einer vergleichsweise geringen Geschwindigkeit davon, er erreicht vielleicht 20 Meter pro Sekunde“, sagt Lukas Wagner, der Erstautor der Studie, der als Doktorand an der TU Wien sowie auch am AC2T forscht. „Das Gas, das dabei aus der Flasche herausströmt, ist aber viel schneller“, sagt Wagner. „Es überholt den Korken, strömt an ihm vorbei und erreicht Geschwindigkeiten von bis zu 400 Metern pro Sekunde.“
Wenn man eine Flasche öffnet, entweicht das Gas demnach so schnell, dass es die Schallgeschwindigkeit überschreitet. Dabei entsteht eine Stoßwelle. Normalerweise verändern sich Eigenschaften wie Druck und Temperatur in einem Gas gleichmäßig. Das heißt, benachbarte Punkte haben fast denselben Luftdruck. Bei einer Stoßwelle ist dies jedoch anders. Es treten plötzliche Sprünge in diesen Eigenschaften auf, was zu Unstetigkeiten führt. Bernhard Scheichl (TU Wien & AC2T) erklärt, dass Druck und Geschwindigkeit direkt vor der Stoßwelle sich stark von den Werten direkt dahinter unterscheiden.
An der Stelle im Gasstrahl, wo der Druck abrupt wechselt, bildet sich die sogenannte „Mach-Scheibe“. Stefan Braun (TU Wien), der Initiator des Projekts und Betreuer der Diplomarbeit von Lukas Wagner zu diesem Thema, weist darauf hin, dass ähnliche Phänomene bei Überschallflugzeugen oder Raketen auftreten. Die Mach-Scheibe entsteht zwischen Flasche und Kork und bewegt sich dann zurück zur Flaschenöffnung.
Gas kühlt auf bis minus 130 Grad ab
Nicht nur der Gasdruck ändert sich beim Öffnen der Sektflasche, sondern auch die Temperatur, stellenweise wird es kälter als am Nordpol. Lukas Wagner erklärt, dass sich Gas beim Expandieren abkühlt, ein Phänomen, das auch bei Sprühdosen auftritt. Bei Sektflaschen ist dieser Effekt besonders stark: Das Gas kann lokal auf bis zu -130° C abkühlen, was zur Bildung winziger Trockeneis-Kristalle aus dem Kohlendioxid führen kann, das für das Perlens des Sekts verantwortlich ist.
Weiterhin erläutert Lukas Wagner, dass die Größe der Trockeneis-Kristalle von der ursprünglichen Temperatur des Sekts abhängt. Verschiedene Temperaturen erzeugen unterschiedlich große Kristalle, die das Licht verschieden streuen. Dies führt zu Rauch, der je nach Größe der Kristalle unterschiedlich gefärbt ist. Die Farbe des Rauchs gibt somit Hinweise auf die ursprüngliche Temperatur des Sekts.
Überschallphänomen kommt überraschend
„Dass es beim Ploppen einer Sektflasche tatsächlich zu Überschallphänomenen kommt, war zunächst alles andere als klar, das würde man nicht unbedingt erwarten“, sagt Bernhard Scheichl. „Aber unsere Simulationen zeigen, dass sich das auf ganz natürliche Weise aus den Gleichungen der Strömungsmechanik ergibt, und unsere Ergebnisse stimmen mit den Experimenten sehr gut überein.“
Der laute Knall, den man beim Öffnen einer Sektflasche hört, entsteht durch zwei verschiedene Phänomene: Einerseits expandiert der Kork schnell, sobald er die Flasche verlässt. Diese abrupte Ausdehnung erzeugt eine Druckwelle. Andererseits entsteht eine Stoßwelle durch den schnellen Gasstrahl, der mit Überschallgeschwindigkeit austritt, ähnlich dem Überschallknall bei Flugzeugen. Diese beiden Effekte zusammen erzeugen den typischen Plopp-Sound des Sektkorkens.
Auch wenn es so scheinen mag, völlig aus einer Sektlaune heraus wurden die Studien dann doch nicht durchgeführt: Die entwickelten Methoden sind auch auf andere Bereiche übertragbar. In vielen technischen Anwendungen, von der Abfeuerung einer Pistolenkugel bis zum Raketenstart, begegnen wir festen Objekten, die in starker Wechselwirkung mit einem schnelleren Gasstrom stehen. Diese Forschungsergebnisse können daher in einer Vielzahl von technisch wichtigen Situationen Anwendung finden.
Ein Beitrag von: