Materialforschung 10.06.2011, 19:53 Uhr

Zersetzen und Auflösen erwünscht

Bei komplizierten Knochenbrüchen muss operiert werden. Der Chirurg befestigt Stahl- oder Titanplatten mit Schrauben am Knochen und fixiert die Bruchstücke. In einer weiteren Operation werden die Implantate nach der Heilung wieder entfernt. Mediziner sind nun auf der Suche nach resorbierbaren Implantatmaterialien, die sich im Körper auflösen. Derzeit im Fokus: Magnesium.

Mit einer Pinzette angelt Dirk Bormann vom Institut für Werkstoffkunde (IW) der Universität Hannover eine Probe aus der Testlösung. Der kleine Magnesiumstab hat seinen metallischen Glanz verloren. „In feuchter Umgebung zersetzt sich Magnesium leicht und löst sich innerhalb weniger Tage auf – es korrodiert“, erklärt Bormann. Normalerweise versuchen Werkstoffwissenschaftler die Korrosion zu verhindern. Bormann nutzt sie gezielt aus, seit er mit Orthopäden der Medizinischen Hochschule Hannover (MHH) resorbierbare Implantate aus Magnesiumlegierungen entwickelt.

Für Magnesiumimplantate hatten sich Mediziner schon vor etwa 80 Jahren interessiert. Erste Tierversuche zeigten aber, dass sich das Metall im Körper zu schnell auflöst. In den 1990er-Jahren entstanden neue Magnesiumwerkstoffe, die langsamer korrodieren. Das Interesse der Mediziner erwachte erneut, denn Magnesium ist biologisch gut verträglich.

„Die Idee, Magnesium im Bereich des Knochens anzuwenden, ist vor gut zehn Jahren in Hannover wiederaufgegriffen worden“, erzählte Henning Windhagen, Leiter der Orthopädischen Kliniken der MHH. Zusammen mit Volker Kaese, der damals am IW die Magnesiumkorrosion erforschte, gewann Windhagen 2000 den Innovationswettbewerb der Bundesregierung für Medizintechnik.

Es entwickelte sich eine fruchtbare Zusammenarbeit von Medizinern und Ingenieuren, obwohl unterschiedliche Denkkulturen aufeinanderstießen. Für Mediziner steht der Patient im Mittelpunkt. Neue technische Lösungen sollen sofort einsetzbar sein. Ingenieure erleben dies als Ungeduld. Sie sind bereit, in der Forschung längere Wege zu gehen.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
HARTMANN-Firmenlogo
Konstrukteur / Entwicklungsingenieur (w/m/d) HARTMANN
Heidenheim Zum Job 
Adolf Würth GmbH & Co. KG-Firmenlogo
Elektroingenieur (m/w/d) Fahrzeugeinrichtung Adolf Würth GmbH & Co. KG
Obersulm-Willsbach Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
durlum Group GmbH-Firmenlogo
Konstruktionsingenieur (m/w/d) durlum Group GmbH
Schopfheim Zum Job 
über RSP Advice Unternehmensberatung-Firmenlogo
Technische Leitung (m/w/d) über RSP Advice Unternehmensberatung
Schleifring GmbH-Firmenlogo
Testingenieur für die Produktqualifikation (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
HAWK Hochschule Hildesheim/Holzminden/Göttingen-Firmenlogo
Laboringenieur*in im Bereich Elektro- und Messtechnik/Gebäudeautonomie HAWK Hochschule Hildesheim/Holzminden/Göttingen
Holzminden Zum Job 
Tagueri AG-Firmenlogo
(Junior) Consultant Funktionale Sicherheit (m/w/d)* Tagueri AG
Stuttgart Zum Job 
ANDRITZ Separation GmbH-Firmenlogo
Automatisierungsingenieur (m/w/d) für Dynamic Crossflow-Filter ANDRITZ Separation GmbH
Vierkirchen Zum Job 
Neovii Biotech GmbH-Firmenlogo
Qualification Engineer (m/w/d) Neovii Biotech GmbH
Gräfelfing Zum Job 
Sauer Compressors-Firmenlogo
Entwicklungsingenieur (m/w/d) Sauer Compressors
Heidrive GmbH-Firmenlogo
Entwicklungsingenieur Elektrotechnik (m/w/d) Heidrive GmbH
Kelheim Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Ingenieur (w/m/d) Verfahrenstechnik / Chemie / Physik als Entwicklungsingenieur Nitto Advanced Film Gronau GmbH
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundeswehr
verschiedene Standorte Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Mobilität und Digitalisierung | Mobilitätskonzepte (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Universität Duisburg-Essen Campus Duisburg-Firmenlogo
13 positions for PhD candidates (f/m/d) Universität Duisburg-Essen Campus Duisburg
Duisburg Zum Job 
Bundesamt für das Personalmanagement der Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundesamt für das Personalmanagement der Bundeswehr
verschiedene Standorte Zum Job 
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 

Für erste Tests fertigten die Ingenieure etwa 30 mm lange Marknägel aus einer Legierung, die sie für die Autoindustrie entwickelt hatten. Die Mediziner setzten diese in Kaninchenknochen ein.

„Die Ergebnisse waren vielversprechend“, sagte Bormann. „Aber die Legierung enthielt 4 % Aluminium und 2 % Seltene Erden. Niemand wusste, wie diese Elemente im Körper wirken.“ Deshalb entwickelte das Team um Bormann spezielle Legierungen für die Medizintechnik. Es verwendete im Körper vorhandene Elemente wie Kalzium und Fluor.

Der Favorit ist heute eine Legierung mit einer Prise Kalzium. Eine hauchdünne Schutzschicht aus Magnesiumfluorid verhindert in den ersten sechs bis zwölf Wochen ein Auflösen im Körper. „Am Anfang sollen die Nägel und Stifte den gebrochenen Knochen voll unterstützen. Hat sich nach einigen Wochen neues Knochenmaterial gebildet, kann sich das Implantat zersetzen“, erläuterte Windhagen.

Seit Magnesiumlegierungen systematisch entwickelt werden, ist der Weg vom Schmelzofen ins Tier länger geworden: Erst nach umfangreichen Korrosionstests in körperähnlichen Flüssigkeiten, Zellkulturen und Organen wie beispielsweise Rindereuter werden die Legierungen implantiert. Im Computertomografen wird der Korrosionsfortschritt beobachtet. „So können wir an wenigen Tieren den gesamten Zersetzungsprozess im lebenden Knochen studieren“, so Bormann.

Die Tests zur biologischen Verträglichkeit haben gezeigt, dass Magnesium antibakteriell wirkt. „Das ist ein deutlicher Vorteil gegenüber resorbierbaren Kunststoffen“, resümierte Windhagen. Aus seiner Sicht werden Implantate, die maximal 20 mm lang und bis zu 3 mm dick sind, in wenigen Jahren aus Magnesium sein. Für große Implantate wie Metallplatten und Marknägel beim Menschen aber sind die Magnesiumlegierungen noch nicht fest genug.

Doch die Ingenieure haben schon neue Ideen. Jan-Marten Seitz ist es gelungen, haarfeine Drähte herzustellen. „Dafür muss das Magnesium gut verformbar sein“, betonte Seitz, „Deshalb verwenden wir eine Legierung mit geringen Mengen Neodym.“ Nach dem Strangpressen wird jeder einzelne Draht auf der Drahtziehanlage bis auf ein Zehntel mm reduziert.

„Ich kann mir gut vorstellen, mehrere feine Drähte zu einem Seil zu binden. Dies ergibt ein stabiles Nahtmaterial. So etwas benötigen Herzchirurgen zum Verschließen des durchtrennten Brustkorbs“, so Seitz über eine mögliche Anwendung.

Noch muss der Werkstoffwissenschaftler die Ärzte von seiner Entwicklung überzeugen. Gelingt dies, wird es ihn nicht stören, wenn seine Seile aus Magnesium sich im Körper langsam zersetzen und auflösen. Denn das ist ausdrücklich erwünscht. SABINE WALTER

Ein Beitrag von:

  • Sabine Walter

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.