Wissenschaft im Diamantenfieber 02.08.2023, 15:04 Uhr

Forschende knacken den Diamanten-Code

Ein internationales Forschungsteam hat herausgefunden, unter welchen Bedingungen Diamanten bevorzugt an die Oberfläche kommen und an welchen Orten das sein wird. Folgt nun ein großer Diamantenrausch?

Diamantenmine

Aus dem Big Hole in Kimberley (Südafrika) wurden bislang insgesamt 2722 Kilogramm Diamanten gefördert.

Foto: Panthermedia.net/timwege

Forscher der Universität Southampton haben in Zusammenarbeit mit einem internationalen Wissenschaftlerteam herausgefunden, dass das Auseinanderdriften tektonischer Platten eine wichtige Rolle bei der Bildung und Eruption von diamantenreichem Magma spielt. Diese Erkenntnisse haben das Potenzial, die zukünftige Diamantensuche zu revolutionieren, da sie Aufschluss darüber geben, wo Diamantenfunde am wahrscheinlichsten sind.

Wie gelangen Diamanten an die Erdoberfläche?

Diamanten, die unter hohem Druck in der Tiefe entstehen, sind Hunderte von Millionen oder sogar Milliarden von Jahren alt. Sie werden in der Regel in einem vulkanischen Gesteinstyp namens Kimberlit gefunden. Kimberlite finden sich in den ältesten, massivsten und widerstandsfähigsten Teilen der Kontinente – vor allem in Südafrika, dem Epizentrum des Diamantenrausches im späten 19. Jahrhundert. Dennoch blieb die Frage, wie und warum diese Schätze an die Oberfläche gelangten, ein ungelöstes Rätsel.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur als Fachexperte Umweltschutz (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Hasse & Wrede GmbH-Firmenlogo
Torsional Vibration Solution Architect (m/f/d) Hasse & Wrede GmbH
Berlin (Home-Office) Zum Job 
Hasse & Wrede GmbH-Firmenlogo
Entwicklungsingenieur für Torsionsschwingungslösungen (m/w/d) Hasse & Wrede GmbH
Berlin (Home-Office) Zum Job 
MicroNova AG-Firmenlogo
Industrial Engineer (m/w/d) Electrical Engineering / Elektrotechnik MicroNova AG
Vierkirchen Zum Job 
JOSEPH VÖGELE AG-Firmenlogo
Konstruktionsingenieur (m/w/d) Maschinenbau JOSEPH VÖGELE AG
Ludwigshafen am Rhein Zum Job 
NORMA Group Holding GmbH-Firmenlogo
Product Design Engineer (m/f/d) NORMA Group Holding GmbH
Maintal Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Ingenieur (w/m/d) - Teilprojektleitung für Bauprojekte DFS Deutsche Flugsicherung GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) konstruktiver Ingenieurbau Die Autobahn GmbH des Bundes
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Bundeswehr
keine Angabe Zum Job 
SARPI Deutschland GmbH-Firmenlogo
Junior-Betriebsingenieur/Verfahrensingenieur Prozesstechnik (m/w/d) SARPI Deutschland GmbH
Cummins Deutschland GmbH-Firmenlogo
Application Engineer (m/w/d) Systems / Software für Nutzfahrzeuge Cummins Deutschland GmbH
Nürnberg Zum Job 
Jülich Forschungszentrum-Firmenlogo
Revisor mit Schwerpunkt Baurevision oder IT-Revision (w/m/d) Jülich Forschungszentrum
Jülich bei Köln Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Bundeswehr
keine Angabe Zum Job 
MKH Greenergy Cert GmbH-Firmenlogo
Projekt-Ingenieur (m/w/d) in der Anlagenzertifizierung MKH Greenergy Cert GmbH
Hamburg Zum Job 
Schleifring GmbH-Firmenlogo
Vertriebsingenieur (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
mondi-Firmenlogo
Junior Anwendungstechniker (m/w/x) mondi
Steinfeld Zum Job 
Energieversorgung Leverkusen GmbH & Co.KG-Firmenlogo
Technische Mitarbeiter Vertragsmanagement (m/w/d) Energieversorgung Leverkusen GmbH & Co.KG
Leverkusen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (m/w/d) für Straßenausstattungsanlagen und Verkehrsführung Die Autobahn GmbH des Bundes
Osnabrück Zum Job 
Sprint Sanierung GmbH-Firmenlogo
Projektleiter (m/w/d) Großschäden Sprint Sanierung GmbH
Düsseldorf Zum Job 

Neuere Forschungen haben den Einfluss globaler tektonischer Kräfte auf die Vulkanausbrüche der letzten Milliarden Jahre detailliert untersucht. Die gewonnenen Erkenntnisse wurden in der renommierten Fachzeitschrift Nature veröffentlicht.

Die Wissenschaftler der University of Southampton arbeiteten dabei eng mit Kollegen der University of Birmingham, der Universität Potsdam, des Deutschen GeoForschungsZentrums GFZ, der Portland State University, der Macquarie University, der University of Leeds, der Universität Florenz und der Queen’s University in Ontario zusammen.

Auseinanderbrechen der Superkontinente begünstigt das Auftauchen der Diamanten

Dr. Tom Gernon, ein führender Geowissenschaftler und leitender Forscher an der Universität Southampton, ist der Hauptautor der Studie. Er erklärt: „Das Muster der Diamanteneruptionen ist zyklisch und ähnelt dem Rhythmus der Superkontinente, die sich im Laufe der Zeit in einem wiederholten Muster zusammensetzen und wieder aufbrechen. Bisher wussten wir jedoch nicht, welcher Prozess dazu führt, dass Diamanten plötzlich ausbrechen, nachdem sie Millionen – oder Milliarden – von Jahren in 150 Kilometern Tiefe unter der Erdoberfläche gelagert haben“.

Um dieses Rätsel zu entschlüsseln, hat das Forschungsteam mit Hilfe statistischer Analysen, einschließlich maschineller Lernverfahren, eine eingehende Untersuchung der forensischen Verbindung zwischen Kontinentalversagen und Kimberlit-Vulkanismus durchgeführt. Die Ergebnisse deuten darauf hin, dass die Eruptionen der meisten Kimberlitvulkane in einem Zeitraum von 20 bis 30 Millionen Jahren nach dem tektonischen Auseinanderbrechen der Kontinente stattfanden.

Dr. Thea Hincks, leitende Wissenschaftlerin an der Universität Southampton, fügt hinzu: „Mit Hilfe von georäumlichen Analysen haben wir herausgefunden, dass Kimberlitausbrüche dazu neigen, sich im Laufe der Zeit allmählich von den Kontinentalrändern ins Innere zu verlagern, und zwar mit Raten, die über die Kontinente hinweg konsistent sind“.

Welche geologischen Prozesse stecken dahinter?

Die Entdeckung dieses Zusammenhangs veranlasste die Forscher, den geologischen Prozess, der diesem Muster zugrunde liegt, genauer zu untersuchen. Dabei stellten sie fest, dass der Erdmantel – die konvektive Schicht zwischen der Erdkruste und dem Erdkern – durch das Aufbrechen (oder Dehnen) der Erdkruste selbst in Entfernungen von Tausenden von Kilometern gestört wird.

Dr. Stephen Jones, ein renommierter Experte für Erdsysteme an der Universität Birmingham und Mitautor der Studie, erklärt: „Wir haben herausgefunden, dass ein Dominoeffekt erklären kann, wie das Auseinanderbrechen von Kontinenten zur Bildung von Kimberlit-Magma führt. Beim Rifting wird ein kleiner Teil der Kontinentalwurzel zerrissen und sinkt in den darunter liegenden Erdmantel ab, wodurch eine Kette ähnlicher Strömungsmuster unter dem nahen gelegenen Kontinent ausgelöst wird“.

Unterstützung vom GFZ Potsdam

Dr. Sascha Brune, Leiter der Abteilung Geodynamische Modellierung am GFZ Potsdam und Mitautor der Studie, hat umfangreiche Simulationen durchgeführt, um diesen Prozess besser zu verstehen. „Während sie entlang der Kontinentalwurzel wandern, entfernen diese zerrütteten Ströme eine beträchtliche Menge an Gestein, die Dutzende von Kilometern dick ist, von der Basis der Kontinentalplatte“, erklärt er.

Die von den Modellen geschätzten durchschnittlichen Wanderungsgeschwindigkeiten stimmten mit Beobachtungen überein, die die Wissenschaftler aus Aufzeichnungen von Kimberlit-Vulkanausbrüchen gewonnen hatten. „Bemerkenswerterweise bringt dieser Prozess die notwendigen Zutaten in den richtigen Mengen zusammen, um gerade genug Schmelze auszulösen, um Kimberlite zu erzeugen“, fügt Dr. Gernon hinzu.

Folgt nun ein Diamantenrausch?

Die Erkenntnisse aus den Forschungsarbeiten dieses Teams könnten dazu verwendet werden, potenzielle Standorte und Zeitpunkte vergangener Vulkanausbrüche zu identifizieren, die mit diesem spezifischen Prozess in Verbindung stehen. Dadurch könnten wertvolle Erkenntnisse gewonnen werden, die in Zukunft die Entdeckung von Diamantenvorkommen erleichtern könnten.

Dr. Gernon betonte, dass diese Studie auch dazu beiträgt, das Verständnis darüber zu vertiefen, wie Vorgänge im Erdinneren die Prozesse an der Oberfläche lenken. Er hat kürzlich eine finanzielle Unterstützung von der WoodNext-Stiftung erhalten, um die Faktoren zu erforschen, die zur globalen Klimaabkühlung im Laufe der Zeit beitragen:  „Das Aufbrechen von Gesteinen reorganisiert nicht nur den Erdmantel, sondern kann auch tiefgreifende Auswirkungen auf die Umwelt und das Klima an der Erdoberfläche haben – Diamanten könnten also nur ein Teil der Geschichte sein.“

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.