Hochaufgelöste Niederschlagskarten 30.11.2023, 09:45 Uhr

KI verrät exakt, wo und wie stark es regnet

Um Überschwemmungen oder Erdrutsche besser vorhersagen zu können, werden globale Klimamodelle benötigt, die Starkregenereignisse frühzeitig erkennen. Eine Lösung könnte KI sein. Karlsruher Forschende haben eine Methode entwickelt, mit der dies viel genauer möglich ist als mit den gängigen Klimamodellen.

Starkregen

Im Zuge des Klimawandels, ist immer häufiger Starkregen zu erwarten. Um Katastrophen wie im Ahrtal zu vermeiden, wäre es wichtig, vorher zu wissen, wie stark der Regen ist und wo genau er runterkommt.

Foto: Panthermedia.net/digidream

Durch den Klimawandel wird es wahrscheinlich in Zukunft noch häufiger zu starken Regenfällen kommen. Um auf Katastrophen wie Hochwasser oder Erdrutsche besser vorbereitet zu sein, braucht globale Klimamodelle. In einer Studie zeigen Forschende des Karlsruher Instituts für Technologie (KIT) erstmals eine Methode auf Basis Künstlicher Intelligenz (KI), mit der sich die Genauigkeit der von globalen Klimamodellen erzeugten groben Niederschlagsfelder erhöhen lässt. Ihnen gelang es, die räumliche Auflösung von Niederschlagsfeldern von 32 auf zwei Kilometer und die zeitliche von einer Stunde auf zehn Minuten zu verbessern.

Anpassung an ein sich änderndes Klima notwendig

Wie bereits geschrieben, werden durch die steigenden Durchschnittstemperaturen extreme Niederschläge weiter zunehmen. Das ist zumindest die allgemeine Erwartung unter vielen Forschenden. Die Folge: Es wird noch häufiger zu Umweltkatastrophen wie der im Ahrtal kommen. Wichtig ist es daher, sich auf ein sich änderndes Klima vorzubereiten und bereits im Vorfeld zu wissen, wo und wie stark es in den einzelnen Gebieten regnen wird.

„Niederschläge sind sowohl räumlich als auch zeitlich sehr variabel und daher schwer vorherzusagen – insbesondere auf lokaler Ebene“, sagt Dr. Christian Chwala vom Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), dem Campus Alpin des KIT in Garmisch-Partenkirchen. „Deshalb wollen wir die Auflösung von Niederschlagsfeldern, wie sie zum Beispiel von globalen Klimamodellen erzeugt werden, erhöhen und damit vor allem ihre Einordnung bezüglich möglicher Bedrohungen wie Flutkatastrophen verbessern.“

Feinere Auflösung = bessere Prognosen

Bisherige globale Klimamodelle verwenden ein recht grobkörniges Raster, so dass sich die Variabilität der Niederschläge nur ungenau darstellen lässt. Mit extremen Recheneinsatz lassen sich zwar auch hochaufgelöste Niederschlagskarten erzeugen, das geht aber nur räumlich und zeitlich begrenzt. Hier kommt dann die KI ins Spiel, die das wesentlich weniger rechenintensiv hinbekommt.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
TÜV Hessen-Firmenlogo
Sachverständiger Elektrotechnik (m/w/d) TÜV Hessen
Frankfurt am Main Zum Job 
Hochschule für angewandte Wissenschaften Kempten-Firmenlogo
Professur (w/m/d) Elektrische Antriebstechnik Hochschule für angewandte Wissenschaften Kempten
Kempten Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Bundesnetzagentur-Firmenlogo
Leitung der Außenstelle Hamburg (w/m/d) Bundesnetzagentur
Hamburg Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Projektingenieur Wasserstoff (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
Berufsgenossenschaft Rohstoffe und chemische Industrie (BG RCI)-Firmenlogo
Sicherheitsingenieurin / Sicherheitsingenieur (m/w/d) regionale Betreuung in der Region Süddeutschland Berufsgenossenschaft Rohstoffe und chemische Industrie (BG RCI)
Stuttgart, Ulm, München, Augsburg, Würzburg Zum Job 
Synthos Schkopau GmbH-Firmenlogo
Maintenance Engineer (m/w/d) Synthos Schkopau GmbH
Schkopau Zum Job 
aedifion-Firmenlogo
(Junior) Engineer - Smart Building (w/m/d) aedifion
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur/in (m/w/d) für Tunnelsicherheit Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
SE Tylose GmbH & Co. KG-Firmenlogo
Ingenieur der Mess- und Regeltechnik (m/w/d) für Investitionsprojekte SE Tylose GmbH & Co. KG
Wiesbaden Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (FH/Bachelor) (m/w/d) Elektrotechnik, Physik, Medizintechnik, Informationstechnik im "Kompetenzzentrum Elektromagnetische Felder" der Abteilung "Wirkungen und Risiken ionisierender und nichtionisierender Strahlung" Bundesamt für Strahlenschutz
Oberschleißheim (bei München) Zum Job 
Stuttgart Netze GmbH-Firmenlogo
(Junior) Ingenieur Elektrotechnik Projektierung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager Bahn (m/w/d) VIVAVIS AG
Berlin, Home-Office Zum Job 
Technische Hochschule Deggendorf-Firmenlogo
Forschungsprofessur oder Nachwuchsprofessur (m/w/d) Industrielle Robotik Technische Hochschule Deggendorf
Bundesamt für Wirtschaft und Ausfuhrkontrolle-Firmenlogo
Elektro- bzw. Informationstechnikerinnen und -techniker (w/m/d) (FH-Diplom/Bachelor) für den Bereich Exportkontrolle Bundesamt für Wirtschaft und Ausfuhrkontrolle
Eschborn Zum Job 
Kraftfahrt-Bundesamt (KBA)-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) (FH-Diplom/Bachelor) für den Arbeitsbereich »Konformitätsprüfung Produkt (CoP-P)« Kraftfahrt-Bundesamt (KBA)
Dresden Zum Job 
Landeshauptstadt München-Firmenlogo
Projektingenieur*in der Fachrichtung Elektrotechnik (w/m/d) Landeshauptstadt München
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieurin / Projektingenieur im Bereich Ladeinfrastruktur (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrische Antriebe" THU Technische Hochschule Ulm

„Wir haben deshalb ein Generatives Neuronales Netz – GAN genannt – aus dem Bereich der Künstlichen Intelligenz entwickelt und es mit hochauflösenden Radarniederschlagsfeldern trainiert. Das GAN lernt dabei, wie es realistische Niederschlagsfelder und deren zeitliche Abfolge aus grob aufgelösten Daten generiert“, erklärt Luca Glawion vom IMK-IFU. „So ist das Netz in der Lage, aus den sehr grob aufgelösten Karten realistische hochaufgelöste Radarniederschlagsfilme zu erstellen.“

Nach Auskunft des Forschungsteam zeigen die verfeinerten Radarkarten unter anderem, wie sich Regenzellen entwickeln und bewegen. Darüber hinaus sind die Karten aber auch in der Lage, präzise die lokalen Regenstatistiken mit entsprechender Extremwertverteilung zu rekonstruieren.

hochauflösende Niederschlagskarte

Mithilfe von KI erstellen Forschende des KIT aus grob aufgelösten Karten hochaufgelöste Radarfilme, um etwa lokale Niederschläge besser vorhersagen zu können.

Foto: Luca Glawion, KIT

Deep-Learning-Methode ist wesentlich schneller

Wie sich zeigte, konnte die KI nicht nur hochaufgelöste Niederschlagskarten erzeugen, sie schaffte es zudem wesentlich schneller als es mit numerischen Wettermodellen möglich ist. „Unsere Methode dient als Grundlage, um grob gerasterte Niederschlagsfelder auf eine Auflösung zu bringen, die der hohen raum-zeitlichen Variabilität von Niederschlag gerecht wird und die Untersuchung regionaler Auswirkungen erst ermöglicht“, sagt Julius Polz vom IMK-IFU. „Unsere Deep-Learning-Methode ist dabei um mehrere Größenordnungen schneller als die Berechnung solch hochaufgelöster Niederschlagsfelder mit numerischen Wettermodellen, die üblicherweise genutzt werden, um Daten von globalen Klimamodellen regional zu verfeinern.“

Laut Forschungsteam generiert die KI-Methode zudem ein Ensemble verschiedener möglicher Niederschlagsfelder. Dies ist wichtig, da es für jedes grob aufgelöste Niederschlagsfeld mehrere physikalisch plausible, hochaufgelöste Entsprechungen gibt. Ein solches Ensemble hilft, ähnlich wie in der Wettervorhersage, die damit verbundene Unsicherheit präziser zu bestimmen.

Zukunftsprognosen für eine sich klimatisch verändernden Welt

Die Studie hat gezeigt, dass das von den Forschenden entwickelte KI-Modell und die methodische Grundlage in Zukunft den Einsatz von neuronalen Netzen ermöglichen, um die Genauigkeit von Klimamodellen bei der Vorhersage von Niederschlägen zu verbessern. Dies würde eine genauere Darstellung und Analyse von Niederschlagsmustern in einem sich wandelnden Klima ermöglichen.

„Im nächsten Schritt werden wir die Methode auf globale Klimasimulationen anwenden, die spezifische Großwetterlagen in eine zukünftige, klimatisch veränderte Welt übertragen – etwa in das Jahr 2100. Durch die höhere Auflösung der mit unserer Methode simulierten Niederschlagsereignisse lässt sich dann besser abschätzen, wie sich beispielsweise die Wetterlage, die 2021 das Hochwasser an der Ahr verursacht hat, in einer zwei Grad wärmeren Welt ausgewirkt hätte“, erklärt Glawion. Solche Informationen seien entscheidend, um Maßnahmen für eine nachhaltige Klimaanpassung entwickeln zu können.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.