Können Pflanzen ein Drittel mehr CO2 aufnehmen als bisher gedacht?
Neue Studie zeigt: Pflanzen können 31 % mehr CO₂ binden als gedacht. Diese Entdeckung könnte Klimamodelle und Vorhersagen entscheidend verbessern.
Forschende haben herausgefunden, dass Pflanzen weltweit etwa 31 % mehr Kohlendioxid (CO₂) aufnehmen als ursprünglich angenommen. Diese Entdeckung könnte weitreichende Konsequenzen für die Klimaforschung und die Modellierung des Kohlenstoffkreislaufs haben. Die Studie, veröffentlicht in der renommierten Zeitschrift Nature, liefert wichtige Erkenntnisse, die dabei helfen können, Erdsystemsimulationen zu verbessern. Das Ziel: Vorhersagen zum zukünftigen Klima zu präzisieren und die Rolle der natürlichen CO₂-Bindung durch Pflanzen besser zu verstehen.
Die Rolle der Photosynthese
Pflanzen nehmen CO₂ durch Photosynthese auf – ein Prozess, bei dem das Gas aus der Atmosphäre in Zucker umgewandelt wird, der dann als Energiequelle dient. Dieser Vorgang ist für den größten Austausch von Kohlenstoff zwischen Land und Atmosphäre verantwortlich.
In der Fachwelt wird dieser Prozess als terrestrische Bruttoprimärproduktion (GPP) bezeichnet. Die Einheit, in der die GPP gemessen wird, ist Petagramm Kohlenstoff pro Jahr. Ein Petagramm entspricht einer Milliarde Tonnen Kohlenstoff, was in etwa der Menge an CO₂ entspricht, die jährlich von 238 Millionen gasbetriebenen Autos ausgestoßen wird.
Neue Modelle revolutionieren unser Verständnis
Ein internationales Forschungsteam unter Leitung der Cornell University hat nun mithilfe neuer Modelle und Messungen die globale Photosyntheseleistung neu bewertet. Die Wissenschaftler*innen schätzen, dass Pflanzen jährlich etwa 157 Petagramm Kohlenstoff aufnehmen. Diese Zahl liegt deutlich über der bisherigen Schätzung von 120 Petagramm, die seit den 1980er Jahren genutzt wurde.
Die neuen Erkenntnisse basieren auf der Untersuchung einer chemischen Verbindung namens Carbonylsulfid (OCS). Diese Substanz wird zusammen mit CO₂ von Pflanzen aufgenommen und ist einfacher zu messen. Da OCS den gleichen Weg durch das Blatt nimmt wie CO₂, konnten die Forschenden es als zuverlässigen Indikator für die Photosynthese nutzen. „Herauszufinden, wie viel CO₂ Pflanzen jedes Jahr binden, ist ein Rätsel, an dem Wissenschaftler*innen schon seit einiger Zeit arbeiten“, erklärt Lianhong Gu, Photosyntheseexperte des Oak Ridge National Laboratory (ORNL).
Die Bedeutung der Mesophyll-Diffusion
Ein Schlüsselfaktor für die neuen Schätzungen ist die sogenannte Mesophyll-Diffusion, die beschreibt, wie CO₂ und OCS in die Blattzellen gelangen. Diese Diffusion ist entscheidend für die Effizienz der Photosynthese. Das Verständnis dieser Prozesse ist auch wichtig, um zu beurteilen, wie gut Pflanzen auf veränderte Umweltbedingungen reagieren können.
Die Wissenschaftlerinnen und Wissenschaftler entwickelten ein Modell, das die Bewegung von OCS in den Blättern genau nachzeichnet. Dadurch konnten sie die Photosyntheseaktivität genauer als je zuvor messen. „Diese Arbeit stellt einen großen Schritt nach vorne dar, wenn es darum geht, eine verlässliche Zahl für die globale Kohlenstoffaufnahme durch Pflanzen zu bestimmen“, so Gu weiter.
Tropische Regenwälder als entscheidender Faktor
Besonders bemerkenswert ist, dass die größten Abweichungen zwischen den alten und neuen Schätzungen in den tropischen Regenwäldern gefunden wurden. Diese Wälder, die eine immense Menge an Biomasse speichern, erweisen sich als weitaus bedeutendere CO₂-Senken, als bisher angenommen.
Frühere Schätzungen basierten häufig auf Satellitendaten, die durch Wolken oder andere atmosphärische Störungen in den Tropen oft ungenau waren. Bodenmessungen in diesen Gebieten bestätigten nun die höhere CO₂-Aufnahme.
Bedeutung für den Klimawandel
Diese neuen Erkenntnisse haben weitreichende Auswirkungen auf die Klimaforschung. Die Fähigkeit von Pflanzen, mehr CO₂ aufzunehmen, als bisher angenommen, könnte wichtige Veränderungen in den Klimamodellen nach sich ziehen. Diese Modelle sind entscheidend, um den zukünftigen Anstieg des atmosphärischen CO₂ und die damit verbundenen Klimafolgen abzuschätzen.
Peter Thornton, Leiter der Abteilung für Erdsystemwissenschaften am ORNL, betont: „Die Festlegung unserer Schätzungen der globalen Primärproduktion mit zuverlässigen Beobachtungen ist ein entscheidender Schritt zur Verbesserung unserer Vorhersagen über den künftigen CO₂-Gehalt in der Atmosphäre.“
Ein Beitrag von: