CO2-Abtrennung 12.11.2010, 19:50 Uhr

Zwei Loopings für weniger Kohlendioxidemissionen

„L1/09“ lautet die schlichte Bezeichnung des Gebäudes auf dem Campus Lichtwiese der Technischen Universität Darmstadt. Dabei könnte hinter den Betonwänden Energiegeschichte geschrieben werden. Nicht weniger als den Durchbruch bei der Abtrennung des Klimagases Kohlendioxid aus Rauchgasen hat sich Hausherr Bernd Epple vorgenommen. Der Leiter des Fachgebiets Energiesysteme und Energietechnik hat Anfang November die mit 1 MW weltweit größte Anlage eingeweiht, die dazu gleich zwei Verfahren beherrscht.

Das Unternehmen Alstom forscht schon lange daran, Kohlendioxid aus Kraftwerksabgasen abzuscheiden. Zwei Verfahren haben die Franzosen seit 2002 entwickelt, beide sind in einer entscheidenden Phase: das Carbonate Looping und das Chemical Looping.

Gemeinsam mit der TU Darmstadt will Alstom der Kommerzialisierung der Prozesse jetzt einen Schritt näherkommen. Zusätzlicher Trumpf für das Projekt: Mit dem Energieunternehmen Vattenfall ist ein Partner für die Anwendung bereits mit an Bord. Die benötigten 8 Mio. € werden vom deutschen Bundesministerium für Wirtschaft und Technologie (BMWi) und der EU über den Research Fund for Coal and Steel eingebracht.

Bei der Einweihung der 1-MW-Anlage Ende letzter Woche war das Interesse bei Forschung und Industrie derart groß, dass über 120 Fachleute aus der ganzen Welt nach Darmstadt strömten. „Klassische Verfahren zur CO2-Abtrennung wie die Gaswäsche mit Aminen oder die Oxyfuel-Verbrennung mit reinem Sauerstoff kosten sieben bis neun Prozentpunkte im Wirkungsgrad entsprechender Kraftwerke“, erklärt Prof. Bernd Epple den Ansturm. „Unser Ansatz halbiert diese Einbuße mindestens und senkt zudem die Kosten“, behauptet der Leiter des Fachgebietes für Energiesysteme und Energietechnik an der TU Darmstadt.

Mit der Anlage in Darmstadt übernimmt Deutschland weltweit eine Führungsposition bei der CCS-Technologie (Carbon Capture and
Storage) der zweiten Generation.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Die Autobahn GmbH des Bundes-Firmenlogo
Staatlich geprüfter Techniker (w/m/d) Elektrotechnik & Verkehrsüberwachung Die Autobahn GmbH des Bundes
Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München-Firmenlogo
Underwriter Downstream / Energy (m/f/d)* Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München
München Zum Job 
Bau- und Liegenschaftsbetrieb NRW-Firmenlogo
Ingenieurinnen / Ingenieure bzw. Technikerinnen / Techniker oder Meisterinnen / Meister der Elektrotechnik (w/m/d) Bau- und Liegenschaftsbetrieb NRW
Münster Zum Job 
Stadtwerke Südholstein GmbH-Firmenlogo
Ingenieur der Elektro- oder Energietechnik als Leiter Planung und Netzbetrieb Strom (m/w/d) Stadtwerke Südholstein GmbH
Pinneberg Zum Job 
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Baukoordination und Qualitätssicherung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Projektierung Netze Strom / Gas (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Klinikverbund Südwest-Firmenlogo
Strahlenschutzbeauftragter (m/w/d) Klinikverbund Südwest
Sindelfingen Zum Job 
Klinikverbund Südwest-Firmenlogo
Strahlenschutzbeauftragter (m/w/d) Klinikverbund Südwest
Sindelfingen Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Betriebsingenieurin / Betriebsingenieur (w/m/d) Müllheizkraftwerk Berliner Stadtreinigungsbetriebe (BSR)
Bruno Bock Group-Firmenlogo
Project Manager (m/w/d) Energy Management Bruno Bock Group
Landeshauptstadt Düsseldorf-Firmenlogo
Leitung des städtischen Krematoriums (m/w/d) für das Garten-, Friedhofs- und Forstamt Landeshauptstadt Düsseldorf
Düsselodrf Zum Job 
Hochschule Reutlingen-Firmenlogo
Akademische:r Mitarbeiter:in "Wärmewende" (m/w/x) Hochschule Reutlingen
Reutlingen Zum Job 
Recogizer-Firmenlogo
Projektingenieur (m/w/d) KI-gestützte CO2-Reduktion Recogizer
Pfisterer Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) Pfisterer Kontaktsysteme GmbH
Winterbach Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektleiterinnen / Projektleiter Energiewirtschaft (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Universitätsklinikum Leipzig-Firmenlogo
Projektleiter Infrastrukturmaßnahmen (m/w/d) Bereich 5 - Bau und Gebäudetechnik Universitätsklinikum Leipzig
Leipzig Zum Job 
Stadt Goslar-Firmenlogo
Ingenieurswesen mit Schwerpunkt Abwassertechnik (m/w/d) Stadt Goslar
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Landschaftspflege und Umwelt (m/w/d) Die Autobahn GmbH des Bundes
München Zum Job 
Stadtwerke Schneverdingen-Neuenkirchen GmbH-Firmenlogo
Leitender Ingenieur (m/w/d) Netzbau und -betrieb Strom und Breitband Stadtwerke Schneverdingen-Neuenkirchen GmbH
Schneverdingen Zum Job 
UGS GmbH-Firmenlogo
Ingenieur Integritätsbewertung (m/w/d) UGS GmbH
Mittenwalde, deutschlandweiter Einsatz Zum Job 

Beim Carbonate-Looping-Verfahren wird natürlich vorkommender Kalkstein genutzt, um das CO2 in einem ersten Reaktor aus dem Abgasstrom zu binden. In einem zweiten Reaktor wird dann das reine CO2 wieder freigesetzt und kann anschließend gespeichert werden. Das eingesetzte Calciumoxid (gebrannter Kalk, CaO) reagiert in dem Wirbelschichtreaktor zu Kalkstein (CaCO3). Diesem wird beim „Brennen“ im zweiten Reaktor das CO2 wieder ausgetrieben, wodurch der Kreislauf von vorn beginnen kann. Der Wirkungsgradverlust beträgt gerade drei Prozentpunkte.

Beim Chemical-Looping-Verfahren, das energetisch noch günstiger ist, handelt es sich um einen völlig neuen Verbrennungsprozess. Hier wird der Sauerstoff, der zur Umsetzung des Brennstoffs (z. B. Kohle, Gas oder Müll) nötig ist, mithilfe eines natürlichen Metalloxides zur Verfügung gestellt. Auf diese Weise entsteht ein nahezu reiner CO2-Strom, der abgetrennt und gespeichert werden kann.

„Wir verwenden als Sauerstoffträger das Mineral Ilmenit aus Norwegen, ein natürlich vorkommendes Titanoxid“, gibt Epple preis. Während das Carbonate Looping insbesondere zur Nachrüstung von bestehenden Kraftwerken geeignet ist, soll das Chemical Looping in Neuanlagen zum Einsatz kommen.

Beide Verfahren können in zwei gekoppelten Wirbelschichtreaktoren realisiert werden, eine parallele Erforschung bietet sich also an. Die Reaktoren waren in Darmstadt bereits vorhanden, Wirbelschichtexperte Epple konnte so neben seinem Know-how auch die Ausrüstung in das EU-Projekt einbringen.

Andreas Brautsch, der bei Alstom Power die Forschung im Bereich CCS leitet, betont: „Nach den ersten positiven Laborergebnissen, die das hohe Potenzial der Technologien bestätigten, haben wir einen Hochschulpartner für die notwendige Validierung gesucht. Mit der TU Darmstadt und der verfügbaren Infrastruktur haben wir einen idealen Partner gefunden“.

Alstom sieht sich als führendes Unternehmen in dieser Technologie und betreibt mit Unterstützung des amerikanischen Energieministeriums eine weitere Versuchsanlage mit Kalkstein als Oxidträger in den USA. „Alle bisherigen Einrichtungen lagen im Bereich von maximal 100 kW, deshalb stellt der Neubau in Darmstadt einen enormen Schritt in der Auf-
skalierung dar“, so Brautsch.

Alle beteiligten Fachleute sind überzeugt, dass das Projekt Eclair (Emission-free Chemical Looping Coal Combustion Process) und der Doppelreaktor von Darmstadt den letzten Schritt hin zu einer vorkommerziellen Anlage mit 10 MW bis 50 MW Leistung darstellt. „Wir gehen davon aus, dass unser Verfahren ab 2017 am Markt verfügbar ist“, sagt Epple. KLAUS JOPP

Ein Beitrag von:

  • Klaus Jopp

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.