Digitaler Zwilling des Verkehrs: Vogelperspektive fürs autonome Fahren
Forschende haben eine neue Technologie zur Verkehrsanalyse entwickelt. Für die Sicherheit könnte das ein großer Sprung sein. Denn die Daten lassen sich auf die einzelnen Fahrzeuge übertragen. Das ermöglicht vorausschauendes Fahren auf einem ganz neuen Niveau.
Vermutlich werden die Straßen eines Tages von autonomen Fahrzeugen dominiert. Expertinnen und Experten versprechen sich davon unter anderem besser fließenden Verkehr und ein großes Plus an Sicherheit. Das soll vor allem über Sensoren und eine leistungsfähige künstliche Intelligenz (KI) im Fahrzeug funktionieren. Bei langsamem Tempo ist das gut vorstellbar, doch lässt sich das Fahrverhalten auch bei hoher Geschwindigkeit zusätzlich verbessern? Genau darauf haben Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) zusammen mit Industriepartnern eine Antwort gefunden. Im Rahmen des Projekts Providentia++, das vom Bundesministerium für Digitales und Verkehr (BMDV) über fünfeinhalb Jahre gefördert wurde, haben die Forschendes ein spannendes System entwickelt. Ergebnis ist ein digitaler Zwilling für den Verkehr. Seine Daten können in autonome Fahrzeuge übertragen werden.
Digitaler Zwilling warnt autonome Fahrzeuge vor Gefahren
Eine gefährliche Situation: Ein Lkw hat auf der Autobahn Ladung verloren, während ein Pkw heranrast, autonom gesteuert. Seine Sensoren würden das Hindernis natürlich wahrnehmen, aber erst spät, ein kurzfristiges Ausweichmanöver müsste eingeleitet werden, mit dem Risiko, dass der Wagen ins Schleudern kommt. Das wäre natürlich anders, wenn die KI im Fahrzeug bereits im Vorfeld über die Gegenstände auf der Fahrbahn informiert wäre. Genau das ist das Ziel des digitalen Zwillings. Er bildet das Verkehrsgeschehen ab.
„Mithilfe von Sensoren an Schilderbrücken und Sensormasten haben wir auf unserer Teststrecke einen zuverlässigen Echtzeitzwilling des Verkehrs geschaffen, der rund um die Uhr im Einsatz ist“, sagt Alois Knoll, Leiter des Lehrstuhls für Robotik, Künstliche Intelligenz und Echtzeitsysteme der TUM. „Damit haben wir die Voraussetzung dafür geschaffen, die Sicht des Fahrzeugs durch eine externe Sicht – nämlich aus der Vogelperspektive – zu ergänzen und zudem das Verhalten anderer Verkehrsteilnehmer in Entscheidungen einzubeziehen.“
Digitaler Zwilling des Verkehrs synchronisiert sich fast in Echtzeit mit dem autonomen Fahrzeug
Die dahinterstehende Technologie ist komplexer, als es im ersten Moment den Anschein hat. Denn der digitale Zwilling muss exakt wissen, wo sich jedes einzelne Fahrzeug befindet, damit nur relevante Informationen für die entsprechende Strecke per Funk übertragen werden. Die Lösung hat Projektpartner Valeo präsentiert: ein sogenanntes IMU-GNSS-System (Inertial Measurement Unit – Global Navigation Satellite System). Es setzt sich aus einer Messeinheit und einem Satellitennavigationssystem zusammen sowie einem Realtime-Kinematik-Kit.
Nach Aussage der Valeo-Experten ist es damit möglich, in Echtzeit ein Koordinatensystem zu erstellen, das die Position zentimetergenau abbildet. Ein UTC-Standard liefert eine einheitliche Zeitbasis. Verzögerungen (Latenzen) lassen sich im Gesamtsystem allerdings nicht ganz vermeiden, da die Sensoren zunächst Informationen erfassen müssen, die vom System analysiert, codiert und ins Fahrzeug übertragen werden. Zudem können Rahmenbedingungen die Übertragung der Daten fürs autonome Fahren in unterschiedlichem Maße verzögern, etwa die Entfernung des Autos zum Sendemast und die aktuelle Kapazität des Übertragungsnetzes. Die Forschenden hoffen daher darauf, dass der neue Funkstandard 5G, besser 6G, umgesetzt ist, wenn der digitale Zwilling des Verkehrs fürs autonome Fahren zum Einsatz kommt.
Digitaler Zwilling wird dezentral errechnet
Der digitale Zwilling des Verkehrs muss nicht nur weitgehend echtzeitfähig sein, sondern auch skalierbar und hochverfügbar. Die Wissenschaftlerinnen und Wissenschaftler bauten für den Praxisbetrieb eine 3,5 Kilometer lange Teststrecke in Garching bei München, die mit sieben Sensorstationen ausgestattet ist. Wichtig ist dabei, dass die erzeugten digitalen Zwillinge dezentral errechnet werden, weswegen die Teststrecke skalierbar ist.
Mehr lesen über digitale Zwillinge:
Ein Beitrag von: