Weltneuheit: Morphingrad kann Treppen steigen und noch mehr
Forschende aus Korea haben ein Rad entwickelt, dessen Steifigkeit sich in Echtzeit anpassen lässt. Es kann Treppen oder Felsen problemlos überwinden. Die Anwendungen sind vielfältig, angefangen bei Rollstühlen bis hin zu mobilen Robotern.
Stellen Sie sich ein Rad vor, das sich den Gegebenheiten anpasst, Treppen steigt und über unwegsames Gelände rollt. Diese Vision ist nun Realität dank des Morphingrads. Entwickelt vom Korea Institute of Machinery and Materials (KIMM), eröffnet diese Technologie neue Möglichkeiten für die Mobilität auf unterschiedlichstem Terrain. Das Morphingrad passt seine Steifigkeit in Echtzeit an und ermöglicht so eine optimale Performance sowohl auf flachen Straßen als auch über Hindernisse wie Felsen oder Treppen hinweg.
Inhaltsverzeichnis
So funktioniert das Morphingrad
Das Morphingrad kann seine Steifigkeit dynamisch verändern. Die Technologie basiert auf der Oberflächenspannung von Flüssigkeitstropfen. Wenn das Rad ein Hindernis erkennt, kann es sich von einem starren Zustand in einen weichen, flexiblen Modus verwandeln. Diese Wandlungsfähigkeit macht es besonders interessant für Fahrzeuge, die sich nicht nur auf ebenen Flächen, sondern auch in anspruchsvollem Gelände bewegen müssen.
Das Rad besteht aus einem intelligenten Kettenblock und einer flexiblen Drahtspeichenstruktur. Die Drahtspeichen verbinden die Radnabe mit der äußeren Kettenblockstruktur. Ändert sich die Position der Nabe oder der Abstand zwischen den Speichen, wird die Oberflächenspannung entsprechend angepasst. So kann das Rad je nach Art des zu überwindenden Hindernisses in eine stabile, starre oder in eine flexiblere, anpassungsfähige Form gebracht werden.
Vergleich mit herkömmlichen Radtechnologien
Es gibt bereits Technologien, um das Innere von Rädern als flexible Strukturen zu gestalten, wie zum Beispiel nicht-pneumatische Reifen. Im Gegensatz zu diesen Reifen bietet das Morphingrad laut Forschungsteam eine deutlich verbesserte Leistung.
Die permanente Flexibilität herkömmlicher Reifen kann auf ebenem Untergrund zu unnötigen Verformungen, Geräuschen und verminderter Effizienz führen. Das Morphingrad hingegen ermöglicht eine gezielte Anpassung der Steifigkeit und damit eine hohe Fahrstabilität, wenn sie benötigt wird.
Praktische Anwendungen und Vorteile
Das KIMM-Forschungsteam hat eine miniaturisierte, leichte Version des Morphingrades entwickelt, die sich nahtlos in verschiedene mobile Systeme integrieren lässt. Ein Beispiel ist die Anwendung in einem zweirädrigen Rollstuhl. Durch die in Echtzeit steuerbare Steifigkeit des Rades kann der Rollstuhl auch auf engstem Raum stabil manövrieren und Hindernisse wie 18 Zentimeter hohe Treppen mühelos überwinden.
In einem Test mit einem vierrädrigen System stellte das Team fest, dass das Morphing-Rad Hindernisse überwinden kann, die 1,3-mal so hoch sind wie der Radius des Rades. Diese Fähigkeit eröffnet eine breite Palette von Anwendungsmöglichkeiten, von alltäglichen Fortbewegungsmitteln über spezialisierte Rettungsfahrzeuge bis hin zu Robotern, die in unwegsamem Gelände operieren.
Potenzial für die Robotik und Mobilität der Zukunft
Das Morphingrad zeigt sein volles Potenzial besonders in der Robotik. Ein bekanntes Problem von laufenden Robotern, sowohl vier- als auch zweibeinig, ist die geringe Bewegungseffizienz auf ebenem Untergrund und die Neigung zu Erschütterungen. Das Morphingrad löst dieses Problem, indem es sich je nach Bedarf verformt und so die Balance zwischen Stabilität und Flexibilität wahrt. Laut Sung-Hyuk Song vom KIMM ist das Morphingrad eine bedeutende Innovation, die die Effizienz und die Fähigkeit zur Hindernisüberwindung von mobilen Robotern erheblich verbessern kann.
Dong Il Park, Leiter des Forschungszentrums für fortgeschrittene Robotik am KIMM, sieht das Morphingrad als Schlüsseltechnologie zur Überwindung der Einschränkungen traditioneller mechanischer Systeme. Inspiriert von der Oberflächenspannung kann diese Technologie die Fähigkeiten von Rollstühlen, mobilen Robotern und anderen Transportmitteln entscheidend erweitern. Sie ermöglicht nicht nur die Überwindung von Hindernissen, sondern fördert auch eine sicherere und effizientere Fortbewegung in urbanen und ländlichen Umgebungen.
Ein Beitrag von: