Neue Oberflächenstruktur: Material haftet auch, wenn es nass wird
Wissenschaftler des Max-Planck-Instituts sind einem bewährten Prinzip gefolgt und haben sich für ihr neues Haftmaterial von der Natur inspirieren lassen. Dabei ist es ihnen gelungen, das biologische Vorbild zu übertreffen. Ihre Entwicklung haftet nämlich auch auf nassem Untergrund.
Geckos üben auf uns Menschen eine große Faszination aus. Denn sie können offenbar mühelos steile Wände hochlaufen, weil ihre Fußsohlen perfekt haften. Tatsächlich sind die Sohlen mit Hunderttausenden winziger, pilzförmiger Härchen bedeckt. Vielen Forschern ist es schon gelungen, diese Struktur nachzuahmen und daraus Haftsysteme zu entwickeln, die ohne Klebstoff und Chemikalien funktionieren. Dementsprechend lassen sie sich problemlos wiederverwenden und das ganz ohne Rückstände. Allerdings haben sie noch etwas mit einem Gecko gemeinsam: Ist die Oberfläche nass, versagt die Haftung, und die Füße des Tieres geraten ins Rutschen. Das Gleiche passiert mit den künstlichen Haftmaterialien. Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben dieses Problem jetzt gelöst. Ihr neues Haftmaterial weist sämtliche Flüssigkeiten ab – und kann damit mehr als die Füße des Geckos.
Spezifische Noppenstruktur der Hafthärchen ist das Geheimnis
„Unser Material weist nicht nur Wasser, sondern jede Flüssigkeit wirksam ab. Öle zum Beispiel, die aufgrund ihrer geringen Oberflächenspannung Oberflächen schnell benetzen, würden sich normalerweise auf und zwischen den feinen Härchen ausbreiten, wodurch diese verklumpen und ihre Haftung verlieren. Aber aufgrund der spezifischen pilzförmigen Noppen-Struktur, die wir entwickelt haben, können unsere Härchen alle Flüssigkeiten abwehren, auch Öle“, erklärt Ville Liimatainen, Postdoktorand in der Abteilung für Physische Intelligenz am MPI-IS.
Das ist den Forschern gelungen, indem sie die Form der sogenannten Hafthärchen angepasst haben. Jedes Härchen ist 40 Mikrometer hoch und an der schmalsten Stelle direkt unter der Kappe zehn Mikrometer dick. Diese hat einen Durchmesser von 28 Mikrometern. Wichtig ist außerdem die überhängende T-Form der Härchenspitzen, die Flüsssigkeiten halten könne, selbst wenn diese eine sehr niedrige Oberflächenspannung habe, wie das bereits erwähnte Öl. Zu dieser besonderen Form und dem ausgeklügelten Größenverhältnis kommt noch das Material. Die Wissenschaftler entschieden sich für dehnbaren, kratzfesten, weichen Silikonelastomer als Baumaterial.
Urform des Materials wird mit einem 3D-Drucker hergestellt
Auf der Abbildung 1c stellen die Pfeile die Vektoren der Oberflächenspannung dar. Das heißt: Selbst wenn sich eine Flüssigkeit bis in die unteren Ecken der Härchenspitzen ausbreiten würde, wäre die Oberflächenspannung trotzdem nach oben gerichtet, im Bild angezeigt durch die Pfeile. Diese Kraft verhindert es nach Aussage der Forscher, dass die Flüssigkeit zwischen die Härchen nach unten rutschen kann.
Für die Herstellung der Fläche wird zunächst eine feste Urfom mittels Zwei-Photonen-Laserlithographie hergestellt. Dabei handelt es sich um ein spezielles 3D-Druck-Verfahren. Anschließend wird ein weiches Silikonelastomer auf die Urform aufgetragen und gehärtet. Ziel ist ein negatives Replikat. Dasselbe Elastomer wird auf das Negativ aufgetragen und für die positive Replik ausgehärtet. Schon ist das neue Haftmaterial fertig.
Vielfältige Anwendungsmöglichkeiten: zum Beispiel in der Medizintechnik
„Gecko-inspirierte Oberflächen sind nun in der Lage, auf jeder nassen Oberfläche ohne Einbußen zu haften. Ein kletternder Roboter wäre mittels einer Ausstattung mit solch einem Haftmaterial in der Lage, eine nasse Glasscheibe hochzuklettern. Oder, um ein anderes Beispiel zu nennen, eine Roboterhand, die mit dem Material beschichtet wäre, könnte jeden mit Flüssigkeit bedeckten Gegenstand greifen und wieder abstellen“, sagt Metin Sitti, Direktor am MPI-IS.
Entsprechend vielfältig sei das Potenzial für die Anwendung. Überall dort, wo aufgrund der Umgebung oder der Arbeitsbedingungen Feuchtigkeit im Spiel sei, aber haftende Oberflächen gebraucht würden, sei die neue Entwicklung eine Alternative, zum Beispiel in der Medizintechnik oder für tragbare, elektronische Geräte.
Weitere Materialentwicklungen:
Ein Beitrag von: