Wertvoller Elektronikschrott: Viren recyceln seltene Erden
Seltene Erden sind begehrte Rohstoffe. Nun zeigen Forscher aus Dresden, wie sich die Metalle aus Elektronikschrott zurückgewinnen lassen. Dazu verwenden sie Bakteriophagen, also Viren, mit besonderer Oberfläche.
Ohne seltene Erden wären zahlreiche Schlüsseltechnologien nicht möglich. Neodym ist Bestandteil von Dauermagneten für Hybridmotoren in Autos und Lanthan wird für Akkus benötigt. Ohne Cer beziehungsweise Lanthan gibt es keine Autokatalysatoren. Europium ist Bestandteil von Energiesparlampen oder LEDs. Ein Hybridauto enthält insgesamt 20 Kilogramm seltener Erden. Auch in der modernen Medizin haben diese Metalle ihren festen Platz. Erbium ist für Laser unerlässlich, während Lutetium in Positions-Emissions-Tomographen zum Einsatz kommt. Doch es ist nicht einfach, den Bedarf zu decken.
Neue Bindungsstellen auf altbekannten Viren
Zum Hintergrund: China fördert derzeit etwa 90% des jährlichen Bedarfs von etwa 110.000 Tonnen. Über Ausfuhrbeschränkungen hat das Reich der Mitte die Preise in den letzten Jahren erheblich kontrolliert. Die Industrie kann nicht auf andere Rohstoffe ausweichen. Damit bleibt als Alternative, wertvolle Metalle zurückzugewinnen. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) schlagen vor, Elektronikschrott besser zu recyceln.
Sie arbeiten mit Bakteriophagen. Diese speziellen Viren gibt es seit Jahrtausenden. Sie sind auf Bakterien spezialisiert, befallen aber keine Zellen von Säugetieren. Bakteriophagen bestehen aus einem Kopf (Kapsid) mit Nukleinsäuren in einer Proteinhülle und einem Injektionsapparat. An diese Struktur haben die Forscher kurze Proteinstücke aus 8 bis 16 einzelnen Aminosäuren gehängt. Sie bilden spezifische Bindungstaschen für Schwermetalle aller Art, beispielsweise seltene Erden.
Nobelpreisträchtige Technologie des Phagen-Display
Mit dieser molekularen Technologie lassen sich unterschiedlich große Strukturen auf molekularer Ebene bauen. Passten beispielsweise Terbium-Ionen aus einer Lösung gut in die Tasche, entsteht eine Verbindung zwischen dem veränderten Bakteriophagen und dem ursprünglich gelösten Metallsalz. Das Virus wurde auf einer Oberfläche verankert. Beim Wegspülen haftet Terbium am Bakteriophagen und damit am Träger, während andere Schwermetalle im Waschwasser bleiben.
Die Methode ist bislang als Phagen-Display in der Biochemie bekannt, um beispielsweise Antikörper-Fragmente auf Phagen zu verankern. Für diese Entwicklung erhielten George P. Smith (USA) und Greg Winter (Großbritannien) im Jahr 2018 den Nobelpreis für Chemie.
Ein neues Leben für Energiesparlampen
Mit dem neuen Verfahren aus Dresden lassen sich Verbindungen seltener Erden etwa aus Energiesparlampen gewinnen. Dazu zählen Lanthan, Cer und Terbium. Im ersten Schritt wird das Leuchtpulver chemisch so aufbereitet, dass es sich in Wasser löst. Anschließend kommen Phagen mit einer passenden Oberflächenstruktur dazu. Sie wurden zuvor an magnetische Kügelchen geheftet. Seltene Erden binden aufgrund ihrer spezifischen Größe am Protein, während andere Schwer- oder Leichtmetalle in der Lösung bleiben. Die Kügelchen lassen sich mit einem Magneten abtrennen. Daraus entstehen nach weiteren Aufarbeitungsschritten hochreine Metalle.
Phagentechnologie: Ein Baukasten – viele Schwermetalle
Das Prinzip ist universell einsetzbar. Jedes Metallion hat einen charakteristischen Ionenradius. Mit der Phagentechnologie kann man „Taschen“ konstruieren, in die nur ein bestimmtes Metall passt. Seltene Erden, aber auch Kupfer, Gold oder Platin-Metalle lassen sich aus komplexen Gemischen, wie sie beim Recycling entstehen, spezifisch extrahieren. Selbst verdünnte Lösungen sind unproblematisch – Metallsalze binden mit hoher Affinität an das jeweilige Protein und können über Träger entfernt werden.
Weitere Einsatzmöglichkeiten sehen die Forscher im Bergbau. Momentan werden seltene Erden mit starken Säuren aus Mineralien wie Bastnäsit, Loparit, Monazit oder Xenotim extrahiert, Umweltprobleme inklusive. Auch hier sehen HZDR-Forscher eine Alternative, um seltene Erden aus zerkleinertem Gestein zu extrahieren. Und selbst die vollgelaufene Abraumhalde wird im wahrsten Sinne des Wortes zur Goldgrube. Phagen mit spezifischen Protein-Bindungsstellen lassen sich an Styroporkügelchen verankern und unter Wasser freisetzen. Auf ihrem Weg zur Oberfläche binden sie selbst kleinste Mengen wertvoller Metalle aus der Grube. Danach lassen sie sich leicht einsammeln. Die Technologie kommt aus der Grundlagenforschung, muss sich in der Anwendung also noch bewähren.
Weiterführende Links:
Ein Beitrag von: