Strom aus Hitze und Kälte 26.09.2013, 13:15 Uhr

Magnetische Atome in Kristallkäfigen machen Power

Ein neues thermoelektrisches Material sorgt in der Fachwelt für Staunen: Dank eines überraschenden physikalischen Effekts erzeugt es besonders hohe Spannung. Industrieunternehmen könnten es zukünftig einsetzen, um aus Abwärme Energie zurückzugewinnen. 

Mit einem speziellen Kristallzuchtverfahren in einem Spiegelofen ist es Forschern der TU Wien erstmals gelungen, Clathrate aus Barium, Silizium und Gold herzustellen, die magnetische Cer-Atome enthalten.

Mit einem speziellen Kristallzuchtverfahren in einem Spiegelofen ist es Forschern der TU Wien erstmals gelungen, Clathrate aus Barium, Silizium und Gold herzustellen, die magnetische Cer-Atome enthalten.

Foto: TU Wien

In Zeiten steigender Strompreise ist es besonders für Großverbraucher wie Industrieunternehmen wichtig, Energie zu sparen. Eine Möglichkeit ist es, Energie wieder einzufangen, die Maschinen in Form von Wärme an ihre Umgebung abgeben. Um dies zu ermöglichen, forschen Wissenschaftler seit längerem an thermoelektronischen Materialien, die sie zwischen heißen und kalten Objekten platzieren. „Auf der heißen Seite des Materials bewegen sich die Elektronen stärker als auf der kalten, wodurch sie zur kalten Seite diffundieren“, erklärt Professorin Silke Bühler-Paschen vom Institut für Festkörperphysik der Technischen Universität Wien. „So entsteht zwischen den beiden Seiten des Thermoelektrikums eine elektrische Spannung.“

Das schien bislang unmöglich: magnetische Atome in Kristallkäfigen

Den Wissenschaftlern ist es nun gelungen, eine effektivere Klasse solcher Materialien herzustellen. Zum Hintergrund: Es kommen in dieser Forschung schon seit längerem käfigartige Kristallverbindungen namens Clathrate zum Einsatz, in die sich Atome einsperren lassen.

Clathrate sind Kristallgitter, die für einzelne Atome zum Käfig werden. Ihre Atome und die des eingesperrten, magnetischen Cer-Gastatoms sind quantenmechanisch eng verbunden. Die Gast-Atome rütteln quasi an ihrem Käfig. Dadurch erhält Material besonders gute thermoelektrische Eigenschaften. 

Clathrate sind Kristallgitter, die für einzelne Atome zum Käfig werden. Ihre Atome und die des eingesperrten, magnetischen Cer-Gastatoms sind quantenmechanisch eng verbunden. Die Gast-Atome rütteln quasi an ihrem Käfig. Dadurch erhält Material besonders gute thermoelektrische Eigenschaften.

Quelle: TU Wien

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Technische Hochschule Augsburg-Firmenlogo
Professur für verfahrenstechnische Produktion Technische Hochschule Augsburg
Augsburg Zum Job 
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
Karlsruher Institut für Technologie-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) im Bereich mechanische Entwicklung und Projektleitung Karlsruher Institut für Technologie
Eggenstein-Leopoldshafen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Fachingenieur (w/m/d) BIM Die Autobahn GmbH des Bundes
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
aedifion-Firmenlogo
(Junior) Engineer - Smart Building (w/m/d) aedifion
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Feinwerkmechanikerin (w/m/d) für Vakuumsysteme von Beschleunigern Deutsches Elektronen-Synchrotron DESY
Hamburg Zum Job 
Max-Planck-Institut für Kernphysik-Firmenlogo
Bauingenieur oder Architekt (w/m/d) Max-Planck-Institut für Kernphysik
Heidelberg Zum Job 
Solventum Germany GmbH-Firmenlogo
Process Engineer Automation (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
HERRENKNECHT AG-Firmenlogo
Leiter Mechanische Bearbeitung (m/w/d) HERRENKNECHT AG
Schwanau Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
pro-beam GmbH & Co. KGaA-Firmenlogo
Maschinenbauingenieur / Wirtschaftsingenieur als Industrial Engineer / Fertigungsplaner (m/w/d) pro-beam GmbH & Co. KGaA
Karlsruher Institut für Technologie (KIT)-Firmenlogo
Universitätsprofessur (W3) Intelligente rekonfigurierbare Produktionsmaschinen Karlsruher Institut für Technologie (KIT)
Karlsruhe Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen Hochschule Esslingen - University of Applied Sciences
Göppingen Zum Job 
Max-Planck-Institut für Astronomie-Firmenlogo
Astronom*in / Physiker*in / Ingenieur*in (m/w/d) für Adaptive Optik Max-Planck-Institut für Astronomie
Heidelberg Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
Bundesamt für das Personalmanagement der Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundesamt für das Personalmanagement der Bundeswehr
verschiedene Standorte Zum Job 
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 

Je nachdem, um welche Atome es sich handelt, verändern sich die Materialeigenschaften. Experten vermuteten bereits seit einiger Zeit, dass besondere Wechselwirkungen zu erwarten sind, wenn sie magnetische Atome wie das Selten-Erd-Metall Cer in solche Strukturen einbauen könnten. Obwohl das bislang unmöglich schien, ist es jetzt gelungen. Mit Hilfe eines Kristallzuchtverfahrens in einem Spiegelofen hat es Professor Andrey Prokofiev von der TU Wien geschafft, Clathrate aus Barium, Silizium und Gold herzustellen, die Cer-Atome enthalten.

Neues Material erzeugt um 50 Prozent höhere Spannung

Nun wollten die Forscher prüfen, ob sich das neue Material als Thermoelektrikum eignet. Und sie wurden überrascht: Experimente zeigten, dass man im Vergleich zu herkömmlichen Materialen durch die eingesperrten Cer-Atome eine um 50 Prozent höhere Spannung erreichen kann. Zudem ist die Wärmeleitfähigkeit der Clathrate extrem gering. Eine weitere tolle Eigenschaft. Denn ansonsten würden sich die unterschiedlichen Temperaturen auf beiden Seiten des Materials rasch angleichen und die elektrische Spannung würde verschwinden.

„Wir beobachten den heißesten Kondo-Effekt der Welt“

„Die Ursache für die außergewöhnlich guten Materialeigenschaften dürfte in einer bestimmten Art von Elektronen-Korrelation liegen – dem sogenannten Kondo-Effekt“, vermutet Bühler-Paschen.

Die Forscher der Stunde: Prof. Silke Bühler-Paschen und Prof. Andrey Prokofiev. 

Die Forscher der Stunde: Prof. Silke Bühler-Paschen und Prof. Andrey Prokofiev.

Quelle: TU Wien

Die Elektronen der Cer-Atome sind mit den Kristallgitter-Atomen quantenmechanisch eng verbunden. Diesen Kondo-Effekt kannten die Forscher bislang eigentlich nur aus der Tieftemperaturphysik in der Gegend des absoluten Nullpunkts. Doch überraschenderweise spielen diese quantenphysikalischen Korrelationen im neuen Clathrat-Material auch bei hunderten Grad Celsius eine Rolle. Bühler-Paschen: „Das Rütteln des eingesperrten Cer-Atoms wird bei hoher Temperatur stärker. Und es ist genau dieses Rütteln, das den Kondo-Effekt bei hohen Temperaturen stabilisiert. Wir beobachten den heißesten Kondo-Effekt der Welt.“

Nun machen Forscher das Material fit für die industrielle Nutzung

Im nächsten Schritt wird das Forscherteam versuchen, das Material für die Industrie interessant zu machen. Dabei will man das Gold, das in den Clathraten zum Einsatz kommt, durch billigere Metalle wie Kupfer ersetzen. Und die Aufgabe des Gastatoms im Käfig könnte zukünftig nicht mehr Cer übernehmen, sondern eine billige Mischung aus Selten-Erd-Elementen. Die Hoffnung sei realistisch, so die Wissenschaftler, dass solche maßgeschneiderten Clathrate zukünftig in der Industrie zum Einsatz kommen, um aus Abwärme elektrische Energie zurückzugewinnen.

 

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitete während seines Studiums der Kommunikationsforschung bei verschiedenen Tageszeitungen. 2012 machte er sich als Journalist selbstständig. Zu seinen Themen gehören Automatisierungstechnik, IT und Industrie 4.0.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.