Mehr Platz auf Festplatten durch Ultraschall
Der Trend ist seit Jahrzehnten ungebrochen. Die Datenspeicher in unseren Festplatten werden immer leistungsfähiger. Experten sehen jedoch langsam das Ende der Fahnenstange erreicht. Irrtum! Ein Forscherteam der Oregon State University hat einen Weg gefunden, der technologischen Sackgasse ein Schnippchen zu schlagen. Mit Ultraschall.
Exakt so war es in den fünfziger Jahren des vergangenen Jahrhunderts: Ein Datenspeicher hatte fünf Megabyte Plattenplatz, kostete umgerechnet 160.000 US-Dollar, wog etwa eine Tonne, musste mit einem Gabelstapler bewegt werden, und für den Transport wurde eine großes Frachtflugzeug benötigt. Und heute? Heute haben Datenspeicher 500 Gigabyte, also 100.000-mal mehr Speicherplatz, laufen zuverlässig in jedem Billiglaptop für ein paar Hundert Euro vom Discounter um die Ecke.
Physik setzt Grenzen des Wachstums
Doch dieses Wachstum schwächelt und zwar eklatant. Der Grund liegt in der Physik der Art der Informationsspeicherung – der Magnetaufzeichnung. Bisher haben Entwickler mehr Speicherplatz auf einer Festplatte gewonnen, indem sie die Bit-tragenden magnetischen Bereiche, das sind die kleinsten Informationseinheiten, immer weiter verkleinert haben. Und hier greift das Limit und das hat einen schwierigen Namen: Superparamagnetismus. Eingedeutscht bedeutet Superparamagnetismus, dass die thermische Energie der magnetischen Bereiche bei normaler Raumtemperatur ihre magnetische Energie übertrifft. Folge: Die kleinsten Informationseinheiten verlieren ihre magnetische Ausrichtung, die Bits werden instabil und „kippen“. Ein sicherer Speicher ist nicht mehr gegeben.
Ultraschall macht Datenträger elastisch
Ein Ausweg aus diesem physikalischen Dilemma bietet möglicherweise das Verfahren, welches das Forscherteam der Oregon State University jetzt zum Patent angemeldet hat. Hierbei macht stark fokussierter Ultraschall, also Schall, den wir Menschen nicht hören können, das Trägermaterial der Festplatte elastisch. Und zwar genau dort, wo der Lese- und Schreibkopf der Platte gerade aktiv ist. Durch diesen Trick lassen sich die einzelnen Bits gezielter magnetisieren, der Effekt mit dem schwierigen Namen taucht nicht auf. Dazu senkt dieses Verfahren auch noch den Stromverbrauch der Festplatte. „Es besteht immer ein Bedarf an Lösungen, die mehr Informationen auf weniger Platz speichern, weniger kosten und weniger Strom verbrauchen“, betont Pallavi Dhagat, Extraordinarius für Elektro- und Computertechnik an der Oregon State University.
Schon länger werkelt die Branche an Möglichkeiten, auf den Platten noch mehr Daten sicher zu speichern. Ein vielversprechender Lösungsansatz war, den Speicher mit Hilfe eines Lasers punktuell dort zu erhitzen, wo der Schreibkopf gerade arbeitet. Durch den Laserbeschuss wird der magnetische Träger punktuell destabilisiert und lässt sich so leichter definiert magnetisieren. Nach dem Erkalten der zuvor erhitzten Bereiche verbleiben die magnetischen Informationen in einem stabilen Zustand.
Laser-Erhitzung ist bisher nicht punktgenau genug
Doch bisher ist es den Forschern nicht gelungen, den zu erhitzenden Bereich so einzugrenzen, dass die umliegenden Gebiete nicht beeinflusst werden. Schon seit längerem testen Entwickler mit anderen magnetischen Materialien herum, um dieses Ausstrahlen der Hitze auf größere Bereiche der Platte zu unterbinden. Von einem Durchbruch sind sie allerdings noch weit entfernt. Dazu kommt: Das Verfahren erfordert den Einbau von vielen optischen, elektronischen und magnetischen Elementen in die Festplatten der neuen Generation. Und das kostet Geld.
Unter diesem Aspekt scheint der Ultraschall-Ansatz recht vielversprechend. Denn mit ihm ließe sich sogar Geld sparen. So kann das Verfahren bei den derzeit in handelsüblichen Festplatten verwendeten Materialien eingesetzt werden und der ganze optische, elektronische und magnetische Schnickschnack ist überflüssig. Die Forscher der Oregon State University sind sich darüber hinaus sogar relativ sicher, dass sie ihr Ultraschall-Verfahren auch auf Halbleiterspeicher wie die Flash-Speicher übertragen können. Denn auch dort ist in nicht allzu ferner Zukunft eine Grenze in Sicht: Die Grenze der Physik.
Ein Beitrag von: