Nanostrukturen machen Glasflügelschmetterling fast unsichtbar
Warum ist der Glasflügelschmetterling fast unsichtbar? Weil eine Nanostruktur auf den Flügeln verhindert, dass sie Licht reflektieren, fanden Forscher aus Karlsruhe heraus. Die Entdeckung könnte reflexionsarme Handydisplays ermöglichen.
Dass eine Oberfläche durchsichtig ist, bedeutet nicht, dass sie kein Licht reflektiert. Man kennt das von Glasscheiben vor Bildern oder auf dem Handydisplay, die je nach Lichteinfall so stark spiegeln, dass kaum noch etwas dahinter zu erkennen ist. Ein Blick auf die Flügel des Glasflügelschmetterlings zeigt, dass die Natur sich auch zu diesem Problem etwas hat einfallen lassen. Die Flügel des Schmetterlings, der hauptsächlich in Mittelamerika verbreitet ist, reflektieren auch dann nur schwach, wenn man schräg darauf schaut.
Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben jetzt das Geheimnis hinter dieser geringen Reflexion erforscht. Die Forscher um Hendrik Hölscher fanden heraus, dass unregelmäßige Nanostrukturen auf der Oberfläche der Schmetterlingsflügel diesen Effekt bewirken. Für den Glasflügler, lateinisch Greta Oto oder Waldgeist, ist er überlebenswichtig, denn er ist dadurch im Flug für Fressfeinde beinahe unsichtbar. In theoretischen Experimenten haben die KIT-Forscher den Effekt nun nachvollzogen und können sich spannende Anwendungsmöglichkeiten, etwa für Handy- oder Laptopdisplays vorstellen.
Unterschiedlich große und unregelmäßig angeordnete Nanosäulen
Je nach Blickwinkel reflektieren die Flügel von Greta Oto nur zwischen zwei und fünf Prozent des einfallenden Lichtes. Dabei reflektiert der Flügel nicht nur das gesamte für den Menschen sichtbare Spektrum schwach, sondern unterdrückt auch – überlebenswichtig für den Schmetterling – die für Tiere wahrnehmbaren Infrarot- und Ultraviolettwellen.
Um diesem bisher unerforschten Phänomen auf den Grund zu gehen, untersuchten die Wissenschaftler den Flügel des Glasflüglers unter dem Rasterelektronenmikroskop. Vorherige Studien zeigten, dass bei anderen Tieren regelmäßige säulenförmige Nanostrukturen für die geringen Reflexionen verantwortlich sind.
Auch bei den Schmetterlingsflügeln fanden die Forscher Nanosäulen, allerdings waren diese im Gegensatz zu den bisherigen Funden unregelmäßig angeordnet und auch unterschiedlich groß. Die typische Höhe der Säulen variiert zwischen 400 und 600 Nanometern und der Abstand zwischen den Säulen zwischen 100 und 140 Nanometern. Das entspricht etwa einem Tausendstel des menschlichen Haares.
In Simulationen haben die Forscher die Unregelmäßigkeit der Nanosäulen in Größe und Anordnung mathematisch abgebildet und konnten zeigen, dass die berechnete reflektierte Lichtmenge für unterschiedliche Blickwinkel genau der beobachteten Menge entspricht. Damit belegten sie, dass eben diese Unregelmäßigkeit der Nanosäulen die geringe Reflexion bei unterschiedlichen Betrachtungswinkeln bewirkt.
Anwendungen dort, wo schwach reflektierende Oberflächen gebraucht werden
Für Hölschers Doktoranden Radwanul Hasan Siddique, der den Effekt entdeckte, ist der Glasflügler ein faszinierendes Tier: „Nicht nur optisch mit seinen durchsichtigen Flügeln, sondern auch wissenschaftlich, da er sich im Gegensatz zu anderen Naturphänomenen, bei denen Regelmäßigkeit oberstes Gebot ist, scheinbares Chaos zunutze macht und damit auch für den Menschen spannende Effekte erzielt.“
Die Ergebnisse eröffnen eine ganze Fülle von Anwendungsmöglichkeiten überall dort, wo schwach reflektierende Oberflächen gebraucht werden, etwa bei Brillengläsern oder Handydisplays. Die Infrastruktur am Institut für Mikrostrukturtechnik ermöglicht neben der theoretischen Erforschung des Phänomens auch die tatsächliche Umsetzung in die Praxis. Erste Anwendungsversuche befinden sich momentan in der Konzeptionsphase, Experimente an Prototypen konnten aber bereits jetzt zeigen, dass diese Art der Oberflächenbeschichtung auch wasserabweisend und selbstreinigend wirkt.
Ein Beitrag von: